Skip to main content

Bridging Scales from Protein Function to Whole-Plant Water Relations with the OnGuard Platform

  • Chapter
  • First Online:
Mathematical Modelling in Plant Biology

Abstract

The characteristics of transport across plant membranes, like all eukaryotic membranes, is highly non-linear. The complexity inherent to such characteristics defies intuitive understanding and, in these circumstances, quantitative mathematical modelling is essential as a tool, both to integrate the detailed knowledge of individual transporters and to extract the properties emerging from their interactions. As the first, fully-integrated and quantitative modelling environment for the study of ion transport dynamics in a plant cell, the OnGuard platform offers a unique tool for examining such emergent properties associated with guard cell metabolism and ion transport at the plasma membrane and tonoplast. The OnGuard platform has already yielded details guiding phenotypic and mutational studies. These advances represent key steps towards ‘reverse-engineering’ of stomatal physiology to improve water use efficiency and carbon assimilation, based on rational design and testing in simulation. The newly expanded platform, OnGuard2, bridges the micro-macro gap in stomatal models, coupling whole-plant transpiration to the molecular functionalities of the guard cell. Here we set out guidelines for use of OnGuard2 and outline a standardized approach that will enable users to advance quickly in applying the platform in classroom and laboratory situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  Google Scholar 

  2. Allaway Please note that the reference style has been changed from a Name–Date style to a Numbered as per the style. WG (1973) Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta 110:63–70

    Article  CAS  Google Scholar 

  3. Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 14:1649–1662

    Article  CAS  Google Scholar 

  4. Assmann SM (1999) The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22:629–637

    Article  CAS  Google Scholar 

  5. Assmann SM, Jegla T (2016) Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr Opin Plant Biol 33:157–167

    Article  CAS  Google Scholar 

  6. Blatt MR (1990) Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid. Planta 180:445–455

    Article  CAS  Google Scholar 

  7. Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    Article  CAS  Google Scholar 

  8. Blatt MR, Clint GM (1989) Mechanisms of fusicoccin action kinetic modification and inactivation of potassium channels in guard cells. Planta 178:509–523

    Article  CAS  Google Scholar 

  9. Hetherington AM (2001) Guard cell signaling. Cell 107:711–714

    Article  CAS  Google Scholar 

  10. Jezek M, Blatt MR (2017) The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiol 174:487–519

    Article  CAS  Google Scholar 

  11. Kim TH, Bohmer M, Hu HH, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding Abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  Google Scholar 

  12. Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  Google Scholar 

  13. Shimazaki KI, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  Google Scholar 

  14. Wang Y, Hills A, Vialet-Chabrand SR, Papanatsiou M, Griffiths H, Rogers S, Lawson T, Lew V, Blatt MR (2017) Unexpected connections between humidity and ion transport discovered using a model to bridge guard cell-to-leaf scales. Plant Cell 29:2921–2139

    Article  CAS  Google Scholar 

  15. Santelia D, Lawson T (2016) Rethinking guard cell metabolism. Plant Physiol 172:1371–1392

    Article  CAS  Google Scholar 

  16. Buckley TN (2017) Modeling stomatal conductance. Plant Physiol 174:572–582

    Article  CAS  Google Scholar 

  17. Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  18. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 33:317–345

    Article  CAS  Google Scholar 

  19. Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45

    Article  CAS  Google Scholar 

  20. McAdam SAM, Brodribb TJ (2016) Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiol 171:2008–2016

    Article  CAS  Google Scholar 

  21. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research. Martinus-Nijhoff, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  22. Pieruschka R, Huber G, Berry JA (2010) Control of transpiration by radiation. Proc Natl Acad Sci U S A 107:13372–13377

    Article  CAS  Google Scholar 

  23. Vialet-Chabrand S, Matthews JSA, Brendel O, Blatt MR, Wang Y, Hills A, Griffiths H, Rogers S, Lawson T (2016) Modelling water use efficiency in a dynamic environment: an example using Arabidopsis thaliana. Plant Sci 251:65–74

    Article  CAS  Google Scholar 

  24. Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  25. Buckley TN, Mott KA (2013) Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 36:1691–1699

    Article  Google Scholar 

  26. Laschov D, Margaliot M (2011) A maximum principle for single-input Boolean control networks. IEEE Trans Autom Control 56:913–917

    Article  Google Scholar 

  27. Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inf Sci 177:3–27

    Article  Google Scholar 

  28. Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31:448–452

    Article  CAS  Google Scholar 

  29. Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4:1732–1748

    Article  CAS  Google Scholar 

  30. Sun Z, Jin X, Albert R, Assmann SM (2014) Multi-level modeling of light-induced Stomatal opening offers new insights into its regulation by drought. PLoS Comput Biol 10:e1003930

    Article  Google Scholar 

  31. Chen ZH, Hills A, Baetz U, Amtmann A, Lew VL, Blatt MR (2012) Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–1251

    Article  CAS  Google Scholar 

  32. Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    Article  CAS  Google Scholar 

  33. Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, Hills A, Lew VL, Blatt MR (2012) Systems dynamic modelling of a guard cell Cl− channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol 160:1956–1972

    Article  CAS  Google Scholar 

  34. Blatt MR (1988) Potassium-dependent bipolar gating of potassium channels in guard cells. J Membr Biol 102:235–246

    Article  Google Scholar 

  35. Blatt MR, Gradmann D (1997) K+ −sensitive gating of the K+ outward rectifier in Vicia guard cells. J Membr Biol 158:241–256

    Article  CAS  Google Scholar 

  36. Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci U S A 100:5549–5554

    Article  CAS  Google Scholar 

  37. Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19:401–406

    Article  CAS  Google Scholar 

  38. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84

    Article  CAS  Google Scholar 

  39. Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED (2003) Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19:677–678

    Article  CAS  Google Scholar 

  40. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  Google Scholar 

  41. Willmer C, Fricker MD (1996) Stomata. Chapman and Hall, London, pp 1–375

    Google Scholar 

  42. Grabov A, Blatt MR (1997) Parallel control of the inward-rectifier K+ channel by cytosolic-free Ca2+ and pH in Vicia guard cells. Planta 201:84–95

    Article  CAS  Google Scholar 

  43. Tiffert T, Lew VL (1997) Cytoplasmic calcium buffers in intact human red cells. J Physiol 500:139–154

    Article  CAS  Google Scholar 

  44. Tsien RW, Tsien RY (1990) Calcium channels, stores and oscillations. Annu Rev Cell Biol 6:715–760

    Article  CAS  Google Scholar 

  45. Wang Y, Blatt MR (2011) Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. Biochem J 439:161–170

    Article  CAS  Google Scholar 

  46. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K + conductance and plays a role in K + homeostasis. Proc Natl Acad Sci U S A 104:10726–10731

    Article  CAS  Google Scholar 

  47. MacRobbie EAC (1995) Effects of ABA on 86 Rb + fluxes at plasmalemma and tonoplast of stomatal guard cells. Plant J 7:835–843

    Article  CAS  Google Scholar 

  48. MacRobbie EAC (2000) ABA activates multiple Ca 2+ fluxes in stomatal guard cells, triggering vacuolar K + (Rb +) release. Proc Natl Acad Sci U S A 97:12361–12368

    Article  CAS  Google Scholar 

  49. MacRobbie EAC (2002) Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci U S A 99:11963–11968

    Article  CAS  Google Scholar 

  50. MacRobbie EAC (2006) Osmotic effects on vacuolar ion release in guard cells. Proc Natl Acad Sci U S A 103:1135–1140

    Article  CAS  Google Scholar 

  51. Blatt MR, Garcia-Mata C, Sokolovski S (2007) Membrane transport and Ca2+ oscillations in guard cells. In: Mancuso S, Shabala S (eds) Rhythms in plants. Springer, Berlin, pp 115–134

    Chapter  Google Scholar 

  52. Wang PT, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  Google Scholar 

  53. Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015) Arabidopsis Calcium-Dependent Protein KINASE8 and CATALASE3 function in Abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27:1445–1460

    Article  CAS  Google Scholar 

  54. Jeanguenin L, Alcon C, Duby G, Boeglin M, Cherel I, Gaillard I, Zimmermann S, Sentenac H, Very A-A (2011) AtKC1 is a general modulator of Arabidopsis inward shaker channel activity. Plant J 67:570–582

    Article  CAS  Google Scholar 

  55. Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K + channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221

    Article  CAS  Google Scholar 

  56. Blatt MR (1992) K+ channels of stomatal guard cells: characteristics of the inward rectifier and its control by pH. J Gen Physiol 99:615–644

    Article  CAS  Google Scholar 

  57. Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5- trisphosphate. Nature 346:766–769

    Article  CAS  Google Scholar 

  58. Gajdanowicz P, Garcia-Mata C, Sharma T, Gonzalez W, Morales-Navarro SE, Gonzalez-Nilo FD, Gutowicz J, Mueller-Roeber B, Blatt MR, Dreyer I (2009) Distributed structures determine K+ and voltage dependent gating of the Kin channel KAT1 and the Kout channel SKOR. New Phytol 182:380–391

    Article  CAS  Google Scholar 

  59. Roelfsema MG, Prins HA (1997) Ion channels in guard cells of Arabidopsis thaliana (L) Heynh. Planta 202:18–27

    Article  CAS  Google Scholar 

  60. Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci U S A 95:4778–4783

    Article  CAS  Google Scholar 

  61. Grabov A, Blatt MR (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol 119:277–287

    Article  CAS  Google Scholar 

  62. Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200:1049–1063

    Article  CAS  Google Scholar 

  63. Li JX, Lee YRJ, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785–795

    Article  CAS  Google Scholar 

  64. Ronzier E, Corratge-Faillie C, Sanchez F, Prado K, Briere C, Leonhardt N, Thibaud JB, Xiong TC (2014) CPK13, a noncanonical Ca2+−dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. Plant Physiol 166: 314–326

    Article  Google Scholar 

  65. Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409:391–395

    Article  CAS  Google Scholar 

  66. Alleva K, Niemietz CM, Maurel C, Parisi M, Tyerman SD, Amodeo G (2006) Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 57:609–621

    Article  CAS  Google Scholar 

  67. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  Google Scholar 

  68. Verdoucq L, Grondin A, Maurel C (2008) Structure–function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem J 415:409–416

    Article  CAS  Google Scholar 

  69. Yang HM, Zhang XY, Wang GX, Zhang JH (2006) Water channels are involved in stomatal oscillations encoded by parameter-specific cytosolic calcium oscillations. J Integr Plant Biol 48:790–799

    Article  CAS  Google Scholar 

  70. Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew VL, Blatt MR (2016) An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol 170:32–45

    Article  Google Scholar 

  71. Blatt MR, Wang Y, Leonhardt N, Hills A (2014) Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells. J Plant Physiol 171:770–778

    Article  CAS  Google Scholar 

  72. Vialet-Chabrand S, Hills A, Wang Y, Griffiths H, Lew VL, Lawson T, Blatt MR, Rogers S (2017) Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics. Plant Physiol 174:680–688

    Article  CAS  Google Scholar 

  73. Asai N, Nakajima N, Kondo N, Kamada H (1999) The effect of osmotic stress on the solutes in guard cells of Vicia faba L. Plant Cell Physiol 40:843–849

    Article  CAS  Google Scholar 

  74. Asai N, Nakajima N, Tamaoki M, Kamada H, Kondo N (2000) Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement. Plant Cell Physiol 41:10–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MP, AH and MRB, and their associated publications, were supported by BBSRC grants BB/L001276/1, BB/L019025/1, BB/M001601/1, and BB/N01832X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Blatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papanatsiou, M., Hills, A., Blatt, M.R. (2018). Bridging Scales from Protein Function to Whole-Plant Water Relations with the OnGuard Platform. In: Morris, R. (eds) Mathematical Modelling in Plant Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-99070-5_5

Download citation

Publish with us

Policies and ethics