Skip to main content

A Virtual Proof

  • Chapter
  • First Online:
  • 1119 Accesses

Part of the book series: Lecture Notes in Mathematics ((HISTORYMS,volume 2222))

Abstract

In this chapter I would like to interrupt the historic line in order to put into evidence what I just said, namely that the proof of RHp could have been found already in 1937, in the framework of the theory of function fields. I will present here such a proof. In principle it can be regarded as a translation of Severi’s proof from the language of algebraic geometry into the language of algebra. But I will not use any knowledge of the terminology and results of algebraic geometry. I shall use those notions and facts from the theory of function fields which were available to and preferred by Hasse at the time of the Göttingen workshop which I have discussed above.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There is some ambiguity in the use of the words “integral” and “integer”. In analysis an “integral” means the result of “integrating” a differential f(x)dx, the result being denoted by \(\int f(x)dx\) in the notation of Leibniz. In number theory the attribute “integral” is sometimes used in the meaning of “being an integer”. In order to avoid misunderstandings I do not use here “integral” in this meaning. Instead, I use “integer” also as an attribute. In the theory of function fields this is interpreted as having no denominator or pole; this can happen not only for divisors but also for differentials. Classically one says “differential of the first kind” instead of “integer differential.”

References

  1. M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper. I. J. Reine Angew. Math. 177, 161–191 (1937)

    MATH  Google Scholar 

  2. M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper. II. J. Reine Angew. Math. 183, 25–36 (1940)

    MATH  Google Scholar 

  3. H. Hasse, Number Theory. Transl. from the 3rd German edn. edited and with a preface by Horst Günter Zimmer. Reprint of the 1980 edn. (Springer, Berlin, 2002), 638 pp.

    Google Scholar 

  4. H. Hasse, The Riemann Hypothesis in Algebraic Function Fields over a Finite Constants Field. Lecture Notes (Pennsylvania State University, State College, Spring 1968)

    Google Scholar 

  5. D. Hilbert, Die Theorie der algebraischen Zahlkörper. Jahresber. Dtsch. Math. Ver., 4:I–XVIII u. 175–546, 1897. Englische Übersetzung: The Theory of Algebraic Number Fields (Springer, Heidelberg, 1998)

    Google Scholar 

  6. E. Kani, Eine Verallgemeinerung des Satzes von Castelnuovo-Severi. J. Reine Angew. Math. 318, 178–220 (1980)

    MathSciNet  MATH  Google Scholar 

  7. P. Roquette, Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts. J. Reine Angew. Math. 191, 199–252 (1953)

    MathSciNet  MATH  Google Scholar 

  8. P. Roquette, On the division fields of an algebraic function field of one variable. An estimate for their degree of irrationality. Houston J. Math. 2, 251–287 (1976)

    MATH  Google Scholar 

  9. F.K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Z. 33, 1–32 (1931)

    Google Scholar 

  10. A. Weil, On the Riemann hypothesis in function fields. Proc. Natl. Acad. Sci. USA 27, 345–347 (1941)

    Article  Google Scholar 

  11. A. Weil, Foundations of Algebraic Geometry. Colloquium Publications, vol. XXIX (American Mathematical Society, Providence, RI, 1946)

    Google Scholar 

  12. A. Weil, Sur les courbes algébriques et les variétés qui s’en deduisent. Actualités scientifiques et industrielles, vol. 1048 (Hermann & Cie, Paris, 1948), 85 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roquette, P. (2018). A Virtual Proof. In: The Riemann Hypothesis in Characteristic p in Historical Perspective. Lecture Notes in Mathematics(), vol 2222. Springer, Cham. https://doi.org/10.1007/978-3-319-99067-5_10

Download citation

Publish with us

Policies and ethics