Abstract
Nitrogen-vacancy (NV) color centers in diamond constitute a unique system for experimental quantum thermodynamic research. The NV is a quantum spin (exhibiting millisecond-scale coherence times at room temperature) within a solid structure, surrounded naturally by both an electronic spin bath (nitrogen impurities) and a nuclear spin bath (\({}^{13}\mathrm{C}\) isotopes). The optical access offered by the NV in terms of spin-state readout and initialization (cooling), together with its versatile microwave control, provides a rich platform for experiments in quantum thermodynamics. We present the NV system, detail core schemes for spin manipulation and bath cooling, and describe future prospects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M.W. Doherty, N.B. Manson, P. Delaney, J. Jelezko, L. Wrachtrup, L. Hollenberg, Phys. Rep. 528(1) (2013). https://doi.org/10.1016/j.physrep.2013.02.001
J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4 810 (2008). https://doi.org/10.1038/nphys1075
J. Klatzow, J.N. Becker, P.M. Ledingham, C. Weinzetl, K.T. Kaczmarek, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, arXiv:1710.08716
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, P. Maletinsky, Nat. Phys. 11, 820 (2015). https://doi.org/10.1038/nphys3411
D.D.B. Rao, S.A. Momenzadeh, J. Wrachtrup, Phys. Rev. Lett. 117, 077203 (2016). https://doi.org/10.1103/PhysRevLett.117.077203
M.J.A. Schuetz, E.M. Kessler, G. Giedke, L.M.K. Vandersypen, M.D. Lukin, J.I. Cirac, Phys. Rev. X 5, 031031 (2015). https://doi.org/10.1103/PhysRevX.5.031031
D.A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K.A. Stewart, H. Wang, Phys. Rev. X 6, 041060 (2016). https://doi.org/10.1103/PhysRevX.6.041060
M. Kolá, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012). https://doi.org/10.1103/PhysRevLett.109.090601
A. Levy, R. Alicki, R. Kosloff, Phys. Rev. E 85, 061126 (2012). https://doi.org/10.1103/PhysRevE.85.061126
W.-L. Ma, G. Wolfowicz, N. Zhao, S.-S. Li, J.J.L. Morton, R.-B. Liu, Nat. Commun. 5, 4822 (2014). https://doi.org/10.1038/ncomms5822
F. Reinhard, F. Shi, N. Zhao, F. Rempp, B. Naydenov, J. Meijer, L.T. Hall, L. Hollenberg, J. Du, R.-B. Liu, J. Wrachtrup, Phys. Rev. Lett. 108, 200402 (2012). https://doi.org/10.1103/PhysRevLett.108.200402
B. Smeltzer, L. Childress, A. Gali, New J. Phys. 13, 025021 (2011). https://doi.org/10.1088/1367-2630/13/2/025021
E. Reynhardt, G. High, Prog. Nucl. Magn. Reson. Spectrosc. 38, 37 (2001). https://doi.org/10.1016/S0079-6565(00)00025-X
A. Jarmola, V.M. Acosta, K. Jensen, S. Chemerisov, D. Budker, Phys. Rev. Lett. 108(197601) (2012). https://doi.org/10.1103/PhysRevLett.108.197601
C. Belthangady, N. Bar-Gill, L.M. Pham, K. Arai, D. Le Sage, P. Cappellaro, R.L. Walsworth, Phys. Rev. Lett. 110, 157601 (2013). https://doi.org/10.1103/PhysRevLett.110.157601
E.L. Hahn, Phys. Rev. 80, 580 (1950). https://doi.org/10.1103/PhysRev.80.580
M. Poggio, H.J. Mamin, C.L. Degen, M.H. Sherwood, D. Rugar, Phys. Rev. Lett. 102, 087604 (2009). https://doi.org/10.1103/PhysRevLett.102.087604
E.C. Reynhardt, G.L. High, J. Chem. Phys. 109, 4100 (1998). https://doi.org/10.1063/1.477010
C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, Heidelberg, 1990). https://doi.org/10.1007/978-3-662-09441-9
H. Brunner, R.H. Fritsch, K.H. Hausser, Zeitschrift für Naturforschung. J. phys. Sci. 42, 1456 (1987)
A. Henstra, W.T. Wenckebach, Mol. Phys. 106, 859 (2008). https://doi.org/10.1080/00268970801998262
P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M.B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L.P. McGuinness, B. Naydenov, F. Jelezko, Phys. Rev. Lett. 111, 067601 (2013). https://doi.org/10.1103/PhysRevLett.111.067601
J. Scheuer, I. Schwartz, Q. Chen, D. Schulze-Sünninghausen, P. Carl, P. Höfer, A. Retzker, H. Sumiya, J. Isoya, B. Luy, M.B. Plenio, B. Naydenov, F. Jelezko, New J. Phys. 18, 013040 (2016). https://doi.org/10.1088/1367-2630/18/1/013040
R. Fischer, C.O. Bretschneider, P. London, D. Budker, D. Gershoni, L. Frydman, Phys. Rev. Lett. 111, 057601 (2013). https://doi.org/10.1103/PhysRevLett.111.057601
G.A. Álvarez, C.O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, L. Frydman, Nat. Commun. 6, 8456 (2015). https://doi.org/10.1038/ncomms9456
Y. Hovav, B. Naydenov, F. Jelezko, N. Bar-Gill, Phys. Rev. Lett. 120, 060405 (2018). https://doi.org/10.1103/PhysRevLett.120.060405
J.M. Vinther, A.B. Nielsen, M. Bjerring, E.R.H. van Eck, A.P.M. Kentgens, N. Khaneja, N.C. Nielsen, J. Chem. Phys. 137, 214202 (2012). https://doi.org/10.1063/1.4768953
J.M. Vinther, N. Khaneja, N.C. Nielsen, J. Magn. Reson. 226, 88 (2013). https://doi.org/10.1016/j.jmr.2012.11.003
S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958). https://doi.org/10.1063/1.1716296
S.J. DeVience, L.M. Pham, I. Lovchinsky, A.O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, R.L. Walsworth, Nat. Nanotechnol. 10, 129 (2015). https://doi.org/10.1038/nnano.2014.313
A. Ajoy, U. Bissbort, M.D. Lukin, R.L. Walsworth, P. Cappellaro, Phys. Rev. X 5, 011001 (2015). https://doi.org/10.1103/PhysRevX.5.011001
D.D.B. Rao, D. Gelbwaser-Klimovsky, A. Ghosh, N. Bar-Gill, G. Kurizki, In Preparation (2018)
R.H. Dicke, Phys. Rev. 93, 99 (1954). https://doi.org/10.1103/PhysRev.93.99
G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer, Phys. Rev. Lett. 117, 043001 (2016). https://doi.org/10.1103/PhysRevLett.117.043001
S. Pezzagna, D. Rogalla, H.-W. Becker, I. Jakobi, F. Dolde, B. Naydenov, J. Wrachtrup, F. Jelezko, C. Trautmann, J. Meijer, Physica Status Solidi (a) 208, 2017 ( 2011). https://doi.org/10.1002/pssa.201100455
A. Ajoy, P. Cappellaro, Phys. Rev. Lett. 110, 220503 (2013). https://doi.org/10.1103/PhysRevLett.110.220503
Y. Lin, J.P. Gaebler, F. Reiter, T.R. Tan, R. Bowler, A.S. Sørensen, D. Leibfried, D.J. Wineland, Nature 504, 415 (2013). https://doi.org/10.1038/nature12801
S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, A. Narla, U. Vool, S.M. Girvin, L. Frunzio, M. Mirrahimi, M.H. Devoret, Nature 504, 419 (2013). https://doi.org/10.1038/nature12802
N.Y. Yao, C.R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E.A. Demler, M.D. Lukin, Phys. Rev. Lett. 113, 243002 (2014). https://doi.org/10.1103/PhysRevLett.113.243002
Acknowledgements
I gratefully acknowledge insights and valuable discussions with Ronald Walsworth, Chinmay Belthangady, Linh Pham, Fedor Jelezko, Paz London, Alex Retzker, Yonatan Hovav, Boris Naydenov and Demitry Farfurnik. I acknowledge support from the Minerva ARCHES award, the EU ERC Starting Grant (Project ID: 714005), the CIFAR-Azrieli Global Scholars program, Israel Ministry of Science, Technology and Space, and the Israel Science Foundation (Grant No. 750/14).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bar-Gill, N. (2018). NV Color Centers in Diamond as a Platform for Quantum Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-99046-0_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99045-3
Online ISBN: 978-3-319-99046-0
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)