Skip to main content

NV Color Centers in Diamond as a Platform for Quantum Thermodynamics

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Nitrogen-vacancy (NV) color centers in diamond constitute a unique system for experimental quantum thermodynamic research. The NV is a quantum spin (exhibiting millisecond-scale coherence times at room temperature) within a solid structure, surrounded naturally by both an electronic spin bath (nitrogen impurities) and a nuclear spin bath (\({}^{13}\mathrm{C}\) isotopes). The optical access offered by the NV in terms of spin-state readout and initialization (cooling), together with its versatile microwave control, provides a rich platform for experiments in quantum thermodynamics. We present the NV system, detail core schemes for spin manipulation and bath cooling, and describe future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.W. Doherty, N.B. Manson, P. Delaney, J. Jelezko, L. Wrachtrup, L. Hollenberg, Phys. Rep. 528(1) (2013). https://doi.org/10.1016/j.physrep.2013.02.001

  2. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4 810 (2008). https://doi.org/10.1038/nphys1075

  3. J. Klatzow, J.N. Becker, P.M. Ledingham, C. Weinzetl, K.T. Kaczmarek, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, arXiv:1710.08716

  4. A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, P. Maletinsky, Nat. Phys. 11, 820 (2015). https://doi.org/10.1038/nphys3411

  5. D.D.B. Rao, S.A. Momenzadeh, J. Wrachtrup, Phys. Rev. Lett. 117, 077203 (2016). https://doi.org/10.1103/PhysRevLett.117.077203

  6. M.J.A. Schuetz, E.M. Kessler, G. Giedke, L.M.K. Vandersypen, M.D. Lukin, J.I. Cirac, Phys. Rev. X 5, 031031 (2015). https://doi.org/10.1103/PhysRevX.5.031031

  7. D.A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K.A. Stewart, H. Wang, Phys. Rev. X 6, 041060 (2016). https://doi.org/10.1103/PhysRevX.6.041060

  8. M. Kolá, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012). https://doi.org/10.1103/PhysRevLett.109.090601

  9. A. Levy, R. Alicki, R. Kosloff, Phys. Rev. E 85, 061126 (2012). https://doi.org/10.1103/PhysRevE.85.061126

  10. W.-L. Ma, G. Wolfowicz, N. Zhao, S.-S. Li, J.J.L. Morton, R.-B. Liu, Nat. Commun. 5, 4822 (2014). https://doi.org/10.1038/ncomms5822

  11. F. Reinhard, F. Shi, N. Zhao, F. Rempp, B. Naydenov, J. Meijer, L.T. Hall, L. Hollenberg, J. Du, R.-B. Liu, J. Wrachtrup, Phys. Rev. Lett. 108, 200402 (2012). https://doi.org/10.1103/PhysRevLett.108.200402

  12. B. Smeltzer, L. Childress, A. Gali, New J. Phys. 13, 025021 (2011). https://doi.org/10.1088/1367-2630/13/2/025021

  13. E. Reynhardt, G. High, Prog. Nucl. Magn. Reson. Spectrosc. 38, 37 (2001). https://doi.org/10.1016/S0079-6565(00)00025-X

  14. A. Jarmola, V.M. Acosta, K. Jensen, S. Chemerisov, D. Budker, Phys. Rev. Lett. 108(197601) (2012). https://doi.org/10.1103/PhysRevLett.108.197601

  15. C. Belthangady, N. Bar-Gill, L.M. Pham, K. Arai, D. Le Sage, P. Cappellaro, R.L. Walsworth, Phys. Rev. Lett. 110, 157601 (2013). https://doi.org/10.1103/PhysRevLett.110.157601

  16. E.L. Hahn, Phys. Rev. 80, 580 (1950). https://doi.org/10.1103/PhysRev.80.580

  17. M. Poggio, H.J. Mamin, C.L. Degen, M.H. Sherwood, D. Rugar, Phys. Rev. Lett. 102, 087604 (2009). https://doi.org/10.1103/PhysRevLett.102.087604

  18. E.C. Reynhardt, G.L. High, J. Chem. Phys. 109, 4100 (1998). https://doi.org/10.1063/1.477010

  19. C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, Heidelberg, 1990). https://doi.org/10.1007/978-3-662-09441-9

  20. H. Brunner, R.H. Fritsch, K.H. Hausser, Zeitschrift für Naturforschung. J. phys. Sci. 42, 1456 (1987)

    Google Scholar 

  21. A. Henstra, W.T. Wenckebach, Mol. Phys. 106, 859 (2008). https://doi.org/10.1080/00268970801998262

  22. P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M.B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L.P. McGuinness, B. Naydenov, F. Jelezko, Phys. Rev. Lett. 111, 067601 (2013). https://doi.org/10.1103/PhysRevLett.111.067601

  23. J. Scheuer, I. Schwartz, Q. Chen, D. Schulze-Sünninghausen, P. Carl, P. Höfer, A. Retzker, H. Sumiya, J. Isoya, B. Luy, M.B. Plenio, B. Naydenov, F. Jelezko, New J. Phys. 18, 013040 (2016). https://doi.org/10.1088/1367-2630/18/1/013040

  24. R. Fischer, C.O. Bretschneider, P. London, D. Budker, D. Gershoni, L. Frydman, Phys. Rev. Lett. 111, 057601 (2013). https://doi.org/10.1103/PhysRevLett.111.057601

  25. G.A. Álvarez, C.O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, L. Frydman, Nat. Commun. 6, 8456 (2015). https://doi.org/10.1038/ncomms9456

  26. Y. Hovav, B. Naydenov, F. Jelezko, N. Bar-Gill, Phys. Rev. Lett. 120, 060405 (2018). https://doi.org/10.1103/PhysRevLett.120.060405

  27. J.M. Vinther, A.B. Nielsen, M. Bjerring, E.R.H. van Eck, A.P.M. Kentgens, N. Khaneja, N.C. Nielsen, J. Chem. Phys. 137, 214202 (2012). https://doi.org/10.1063/1.4768953

  28. J.M. Vinther, N. Khaneja, N.C. Nielsen, J. Magn. Reson. 226, 88 (2013). https://doi.org/10.1016/j.jmr.2012.11.003

  29. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958). https://doi.org/10.1063/1.1716296

  30. S.J. DeVience, L.M. Pham, I. Lovchinsky, A.O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, R.L. Walsworth, Nat. Nanotechnol. 10, 129 (2015). https://doi.org/10.1038/nnano.2014.313

  31. A. Ajoy, U. Bissbort, M.D. Lukin, R.L. Walsworth, P. Cappellaro, Phys. Rev. X 5, 011001 (2015). https://doi.org/10.1103/PhysRevX.5.011001

  32. D.D.B. Rao, D. Gelbwaser-Klimovsky, A. Ghosh, N. Bar-Gill, G. Kurizki, In Preparation (2018)

    Google Scholar 

  33. R.H. Dicke, Phys. Rev. 93, 99 (1954). https://doi.org/10.1103/PhysRev.93.99

  34. G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer, Phys. Rev. Lett. 117, 043001 (2016). https://doi.org/10.1103/PhysRevLett.117.043001

  35. S. Pezzagna, D. Rogalla, H.-W. Becker, I. Jakobi, F. Dolde, B. Naydenov, J. Wrachtrup, F. Jelezko, C. Trautmann, J. Meijer, Physica Status Solidi (a) 208, 2017 ( 2011). https://doi.org/10.1002/pssa.201100455

  36. A. Ajoy, P. Cappellaro, Phys. Rev. Lett. 110, 220503 (2013). https://doi.org/10.1103/PhysRevLett.110.220503

  37. Y. Lin, J.P. Gaebler, F. Reiter, T.R. Tan, R. Bowler, A.S. Sørensen, D. Leibfried, D.J. Wineland, Nature 504, 415 (2013). https://doi.org/10.1038/nature12801

  38. S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, A. Narla, U. Vool, S.M. Girvin, L. Frunzio, M. Mirrahimi, M.H. Devoret, Nature 504, 419 (2013). https://doi.org/10.1038/nature12802

  39. N.Y. Yao, C.R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E.A. Demler, M.D. Lukin, Phys. Rev. Lett. 113, 243002 (2014). https://doi.org/10.1103/PhysRevLett.113.243002

Download references

Acknowledgements

I gratefully acknowledge insights and valuable discussions with Ronald Walsworth, Chinmay Belthangady, Linh Pham, Fedor Jelezko, Paz London, Alex Retzker, Yonatan Hovav, Boris Naydenov and Demitry Farfurnik. I acknowledge support from the Minerva ARCHES award, the EU ERC Starting Grant (Project ID: 714005), the CIFAR-Azrieli Global Scholars program, Israel Ministry of Science, Technology and Space, and the Israel Science Foundation (Grant No. 750/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Bar-Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bar-Gill, N. (2018). NV Color Centers in Diamond as a Platform for Quantum Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_41

Download citation

Publish with us

Policies and ethics