Skip to main content

Thermodynamics from Information

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Thermodynamics and information have intricate inter-relations. The justification of the fact that information is physical, is done by inter-linking information and thermodynamics – through Landauer’s principle. This modern approach towards information recently has improved our understanding of thermodynamics, both in classical and quantum domains. Here we show thermodynamics as a consequence of information conservation. Our approach can be applied to most general situations, where systems and thermal-baths could be quantum, of arbitrary sizes and even could posses inter-system correlations. The approach does not rely on an a priori predetermined temperature associated to a thermal bath, which is not meaningful for finite-size cases. Hence, the thermal-baths and systems are not different, rather both are treated on an equal footing. This results in a “temperature”-independent formulation of thermodynamics. We exploit the fact that, for a fix amount of coarse-grained information, measured by the von Neumann entropy, any system can be transformed to a state that possesses minimal energy, without changing its entropy. This state is known as a completely passive state, which assumes Boltzmann–Gibb’s canonical form with an intrinsic temperature. This leads us to introduce the notions of bound and free energy, which we further use to quantify heat and work respectively. With this guiding principle of information conservation, we develop universal notions of equilibrium, heat and work, Landauer’s principle and also universal fundamental laws of thermodynamics. We show that the maximum efficiency of a quantum engine, equipped with a finite baths, is in general lower than that of an ideal Carnot’s engine. We also introduce a resource theoretic framework for intrinsic-temperature based thermodynamics, within which we address the problem of work extraction and state transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Gemmer, M. Michel, G. Mahler, in Quantum thermodynamics. Lecture Notes in Physics, vol. 748 (Springer, Berlin, Heidelberg, 2009). https://doi.org/10.1007/978-3-540-70510-9

  2. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015). https://doi.org/10.1038/nphys3230

  3. J.C. Maxwell, Theory of Heat (Longmans, Green, and Co., London, New York, Bombay, 1908). https://archive.org/details/theoryofheat00maxwrich/page/n8

  4. H.S. Leff, A.F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Taylor and Francis, London, 1990). https://press.princeton.edu/titles/4731.html

  5. H.S. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Taylor and Francis, London, 2002). https://doi.org/10.1201/9781420033991

  6. K. Maruyama, F. Nori, V. Vedral, Rev. Modern Phys. 81, 1 (2009). https://doi.org/10.1103/RevModPhys.81.1

  7. L. Szilard, Z. Phys. 53, 840 (1929). https://doi.org/10.1007/BF01341281

  8. R. Landauer, IBM J. Res. Dev. 5, 183 (1961). https://doi.org/10.1147/rd.53.0183

  9. C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982). https://doi.org/10.1007/BF02084158

  10. M.B. Plenio, V. Vitelli, Contemp. Phys. 42, 25 (2001). https://doi.org/10.1080/00107510010018916

  11. L. del Rio, J. Aberg, R. Renner, O.C.O. Dahlsten, V. Vedral, Nature 474, 61 (2011). https://doi.org/10.1038/nature10123

  12. D. Reeb, M.M. Wolf, N. J. Phys. 16, 103011 (2014). https://doi.org/10.1088/1367-2630/16/10/103011

  13. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

  14. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667

  15. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, New York, 2005). https://doi.org/10.1002/047174882X

  16. R. Alicki, M. Fannes, Phys. Rev. E 87, 042123 (2013). https://doi.org/10.1103/PhysRevE.87.042123

  17. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015). https://doi.org/10.1103/PhysRevX.5.041011

  18. M.N. Bera, A. Riera, M. Lewenstein, A. Winter, Nat. Commun. 8, 2180 (2017a). https://doi.org/10.1038/s41467-017-02370-x

  19. A.J. Short, N. J. Phys. 13, 053009 (2011). https://doi.org/10.1088/1367-2630/13/5/053009

  20. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A Math. Theor. 49, 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001

  21. L. del Rio, A. Hutter, R. Renner, S. Wehner, Phys. Rev. E 94, 022104 (2016). https://doi.org/10.1103/PhysRevE.94.022104

  22. C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016). https://doi.org/10.1088/0034-4885/79/5/056001

  23. S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 745 (2006). https://doi.org/10.1038/nphys444

  24. F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Phys. Rev. Lett. 111, 250404 (2013). https://doi.org/10.1103/PhysRevLett.111.250404

  25. O.C.O. Dahlsten, R. Renner, E. Rieper, V. Vedral, N. J. Phys. 13, 053015 (2011). https://doi.org/10.1088/1367-2630/13/5/053015

  26. J. Aberg, Nat. Commun. 4, 2013 (1925). https://doi.org/10.1038/ncomms2712

  27. M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2013 (2059). https://doi.org/10.1038/ncomms3059

  28. P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5, 4185 (2014). https://doi.org/10.1038/ncomms5185

  29. F.G.S.L. Brandao, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015). https://doi.org/10.1073/pnas.1411728112

  30. P. Ćwikliński, M. Studziński, M. Horodecki, J. Oppenheim, Phys. Rev. Lett. 115, 210403 (2015). https://doi.org/10.1103/PhysRevLett.115.210403

  31. M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Phys. Rev. X 5, 021001 (2015a). https://doi.org/10.1103/PhysRevX.5.021001

  32. D. Egloff, O.C.O. Dahlsten, R. Renner, V. Vedral, N. J. Phys. 17, 073001 (2015). https://doi.org/10.1088/1367-2630/17/7/073001

  33. M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6, 6383 (2015b). https://doi.org/10.1038/ncomms7383

  34. M.N. Bera, A. Riera, M. Lewenstein, A. Winter (2017b), arXiv:1707.01750

  35. M.N. Bera, A. Acín, M. Kuś, M. Mitchell, M. Lewenstein, Rep. Prog. Phys. 80, 124001 (2017c). https://doi.org/10.1088/1361-6633/aa8731

  36. F. Hulpke, U.V. Poulsen, A. Sanpera, A. Sen(De), U. Sen, M. Lewenstein, Found. Phys. 36, 477 (2006). https://doi.org/10.1007/s10701-005-9035-7

  37. C. Jarzynski, J. Stat. Phys. 98, 77 (2000). https://doi.org/10.1023/A:1018670721277

  38. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys 81, 1665 (2009). https://doi.org/10.1103/RevModPhys.81.1665

  39. T. Sagawa, Second law-like inequalities with quantum relative entropy: an introduction, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, vol. 8 (World Scientific, Singapore, 2012), pp. 125–190. https://doi.org/10.1142/9789814425193_0003

  40. C. Sparaciari, J. Oppenheim, T. Fritz, Phys. Rev. A 96, 052112 (2017). https://doi.org/10.1103/PhysRevA.96.052112

  41. E.T. Jaynes, Phys. Rev. 106, 620 (1957a). https://doi.org/10.1103/PhysRev.106.620

  42. E.T. Jaynes, Phys. Rev. 108, 171 (1957b). https://doi.org/10.1103/PhysRev.108.171

  43. W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978). https://doi.org/10.1007/BF01614224

  44. A. Lenard, J. Stat. Phys. 19, 575 (1978). https://doi.org/10.1007/BF01011769

  45. L. Masanes, J. Oppenheim, Nat. Commun. 8, 14538 (2017). https://doi.org/10.1038/ncomms14538

Download references

Acknowledgements

We acknowledge financial support from the European Commission (FETPRO QUIC H2020-FETPROACT-2014 No. 641122), the European Research Council (AdG OSYRIS and AdG IRQUAT), the Spanish MINECO (grants no. FIS2008-01236, FISICATEAMO FIS2016-79508-P, FIS2013-40627-P, FIS2016-86681-P, and Severo Ochoa Excellence Grant SEV-2015-0522) with the support of FEDER funds, the Generalitat de Catalunya (grants no. 2017 SGR 1341, and SGR 875 and 966), CERCA Program/Generalitat de Catalunya and Fundació Privada Cellex. MNB also thanks support from the ICFO-MPQ fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabendra Nath Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, M.N., Winter, A., Lewenstein, M. (2018). Thermodynamics from Information. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_33

Download citation

Publish with us

Policies and ethics