Performance of Quantum Thermodynamic Cycles

  • Tova Feldmann
  • José P. PalaoEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)


Quantum cycles are the microscopic version of the macroscopic thermodynamic cycles, such as the Carnot cycle or the Otto cycle. The quantum Otto cycle consists of four-strokes, two adiabats and two isochores. The equations for the dynamics on the adiabats and isochores are derived from first principles and illustrated for a working medium consisting of spins. We review a frictionlike behaviour due to the noncommutability of the external and internal Hamiltonians. The performance of the engine cycle and the refrigerator cycle are illustrated using a simple model of an ensemble of spin pairs with an effective interaction.



Tova Feldmann thanks Prof. Ronnie Kosloff the collaboration for over twenty years, during which Ronnie taught her new ways of thinking in science. Tova Feldmann also thanks Amikam Levy for many interesting conversations. José P. Palao thanks Ronnie Kosloff, Antonia Ruiz and J. Onam González for useful discussions, and acknowledges financial support by the Spanish MINECO (FIS2013-4132-P, FIS2017-82855-P).


  1. 1.
    E. Geva, R. Kosloff, A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 96, 3054 (1992).
  2. 2.
    E. Geva, R. Kosloff, On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 97, 4398 (1992).
  3. 3.
    H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007).
  4. 4.
    A.E. Allahverdyan, E. Armen, R.S. Johal, G. Mahler, Work extremum principle: structure and function of quantum heat engines. Phys. Rev. E 77, 041118 (2008).
  5. 5.
    R. Silva, G. Manzano, P. Skrzypczyk, N. Brunner, Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys. Rev. E 94, 032120 (2016).
  6. 6.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010).
  7. 7.
    R. Kosloff, T. Feldmann, Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65, 055102 (2002).
  8. 8.
    T. Feldmann, R. Kosloff, Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68, 016101 (2003).
  9. 9.
    Y. Rezek, R. Kosloff, Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8, 83 (2006).
  10. 10.
    R. Kosloff, Y. Rezek, The quantum harmonic Otto cycle. Entropy 19, 136 (2017).
  11. 11.
    T. Feldmann, R. Kosloff, Performance of discrete heat engines and heat pumps in finite time. Phys. Rev. E 61, 4774 (2000).
  12. 12.
    J. He, J. Chen, B. Hua, Quantum refrigeration cycles using spin-1/2 systems as working substance. Phys. Rev. E 65, 036145 (2002).
  13. 13.
    Y. Rezek, P. Salamon, K.H. Hoffmann, R. Kosloff, The quantum refrigerator: the quest for absolute zero. Europhys. Lett. 85, 30008 (2009).
  14. 14.
    T. Feldmann, R. Kosloff, Minimal temperature of quantum refrigerators. Europhys. Lett. 89, 20004 (2010).
  15. 15.
    R. Kosloff, T. Feldmann, Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 82, 011134 (2010).
  16. 16.
    E. Torrontegui, R. Kosloff, Quest for absolute zero in the presence of external noise. Phys. Rev. E 88, 032103 (2013).
  17. 17.
    T. Feldmann, E. Geva, R. Kosloff, P. Salomon, Heat engines in finite time governed by master equations. Am. J. Phys. 64, 485 (1996).
  18. 18.
    F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, G. Galve, N. Lo Gullo, R. Zambrini, Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014).
  19. 19.
    X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010).
  20. 20.
    T. Feldmann, R. Kosloff, Short time cycles of purely quantum refrigerators. Phys. Rev. E 85, 051114 (2012).
  21. 21.
    H. Breuer, F. Petruccione, The Theory of Open Quamtum Systems (Oxford University Press, New York, 2002).
  22. 22.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976).
  23. 23.
    V. Gorini, A. Kossakowski, E. Sudarshan, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821 (1976).
  24. 24.
    T. Feldmann, R. Kosloff, Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006).
  25. 25.
    T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).
  26. 26.
    A. Bartana, R. Kosloff, D. Tannor, Laser cooling of molecular internal degrees of freedom by a series of shaped pulses. J. Chem. Phys. 99, 196 (1993).
  27. 27.
    A. del Campo, J. Goold, M. Paternostro, More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014).
  28. 28.
    R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamics signatures. Phys. Rev. X 5, 031044 (2015).
  29. 29.
    R. Uzdin, R. Kosloff, Universal features in the efficiency at maximal work of hot quantum Otto engines. Europhys. Lett. 108, 40001 (2014).
  30. 30.
    I.I. Novikov, Efficiency of an atomic power generating installation. At. Energy 3, 1269 (1957).
  31. 31.
    F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975).
  32. 32.
    C. Van den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005).
  33. 33.
    P. Salamon, J.D. Nulton, G. Siragusa, T.R. Andersen, A. Limon, Principles of control thermodynamics. Energy 26, 307 (2001).
  34. 34.
    P. Salamon, K.H. Hoffmann, Y. Rezek, R. Kosloff, Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 11, 1027 (2009).
  35. 35.
    J.P. Palao, L.A. Correa, G. Adesso, D. Alonso, Efficiency of inefficient endoreversible thermal machines. Braz. J. Phys. 46, 282 (2016).
  36. 36.
    O. Abah, E. Lutz, Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113, 60002 (2016).
  37. 37.
    J.M. Gordon, K.C. Ng, H.T. Chua, Optimizing chiller operation based on finite-time thermodynamics: universal modeling and experimental confirmation. Int. J. Refrig. 20, 191 (1997).
  38. 38.
    T. Feldmann, R. Kosloff, Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70, 046110 (2004).
  39. 39.
    A. Insinga, B. Andresen, P. Salamon, R. Kosloff, Quantum heat engines: limit cycles and exceptional points. Phys. Rev. E 97 062153 (2018).
  40. 40.
    A. Insinga, B. Andresen, P. Salamon, Thermodynamical analysis of a quantum heat engine based on harmonic oscillator. Phys. Rev. E 94, 012119 (2016).
  41. 41.
    M. Hübner, Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239 (1992).
  42. 42.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).
  43. 43.
    J.O. González, J.P. Palao, D. Alonso, Relation between topology and heat currents in multilevel absorption machines. New J. Phys. 19, 113037 (2017).
  44. 44.
    T. Feldmann, R. Kosloff, Transitions between refrigeration regions in extremely short quantum cycles. Phys. Rev. E 93, 052150 (2016).
  45. 45.
    R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence, work extraction beyond Markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016).
  46. 46.
    J. Rosnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryHebrew University of JerusalemJerusalemIsrael
  2. 2.Departamento de Física and IUdEAUniversidad de La LagunaLa LagunaSpain

Personalised recommendations