Abstract
Resource theories are a generic approach used to manage any valuable resource, such as entanglement, purity, and asymmetry. Such frameworks are characterized by two main elements: a set of predefined (free) operations and states, that one assumes to be easily obtained at no cost. Given these ground rules, one can ask: what is achievable by using such free operations and states? This usually results in a set of state transition conditions, that tell us if a particular state \( \rho \) may evolve into another state \( \rho ' \) via the usage of free operations and states. We shall see in this chapter that thermal interactions can be modelled as a resource theory. The state transition conditions arising out of such a framework, are then referred to as “second laws”. We shall also see how such state transition conditions recover classical thermodynamics in the i.i.d. limit. Finally, we discuss how these laws are applied to study fundamental limitations to the performance of quantum heat engines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Any state which is not a free state is then called a resource state.
- 2.
Up to an arbitrarily good approximation to the final state \(\rho _S'\) for fixed dimensional \(\mathcal {H}_S\), in operator norm.
References
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996a). https://doi.org/10.1103/PhysRevA.53.2046
P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, N. Gisin, Nature 409, 1014 (2001). https://doi.org/10.1038/35059017
H. Takahashi, J.S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, M. Sasaki, Nat. Photonics 4, 178 (2010). https://doi.org/10.1038/nphoton.2010.1
K.G.H. Vollbrecht, C.A. Muschik, J.I. Cirac, Phys. Rev. Lett. 107, 120502 (2011). https://doi.org/10.1103/PhysRevLett.107.120502
F.G. Brandão, G. Gour, Phys. Rev. Lett. 115, 070503 (2015). https://doi.org/10.1103/PhysRevLett.115.070503
G. Gour, R.W. Spekkens, New J. Phys. 10, 033023 (2008). https://doi.org/10.1088/1367-2630/10/3/033023
M.B. Plenio, S. Virmani, Quantum Inf. Comput. 7, 1 (2007). arXiv:quant-ph/0504163
R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865
T. Baumgratz, M. Cramer, M. Plenio, Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401
A. Winter, D. Yang, Phys. Rev. Lett. 116, 120404 (2016). https://doi.org/10.1103/PhysRevLett.116.120404
M. Horodecki, P. Horodecki, J. Oppenheim, Phys. Rev. A 67, 062104 (2003). https://doi.org/10.1103/PhysRevA.67.062104
F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Phys. Rev. Lett. 111, 250404 (2013). https://doi.org/10.1103/PhysRevLett.111.250404
I. Marvian, R.W. Spekkens, New J. Phys. 15, 033001 (2013). https://doi.org/10.1088/1367-2630/15/3/033001
G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, Physics Reports 583, 1 (2015). https://doi.org/10.1016/j.physrep.2015.04.003
C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982). https://doi.org/10.1007/BF02084158
R. Landauer, IBM J. Res. Dev. 5, 183 (1961). https://doi.org/10.1147/rd.53.0183
C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996b). https://doi.org/10.1103/PhysRevLett.76.722
M. Horodecki, J. Oppenheim, R. Horodecki, Phys. Rev. Lett. 89, 240403 (2002). https://doi.org/10.1103/PhysRevLett.89.240403
I. Devetak, A. Harrow, A. Winter, IEEE Trans. Inf. Theory 54, 4587 (2008). https://doi.org/10.1109/TIT.2008.928980
R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Open Syst. Inf. Dyn. 11, 205 (2004). arXiv:quant-ph/0402012
R. Bhatia, Matrix Analysis, Graduate texts in mathematics (Springer, Berlin, 1997). https://doi.org/10.1007/978-1-4612-0653-8
G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge, 1952)
M.A. Nielsen, Lect. Notes, Department of physics (University of Queensland, Australia, 2002)
J. Scharlau, M.P. Mueller, Quantum 2, 54 (2018). https://doi.org/10.22331/q-2018-02-22-54
W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978). https://doi.org/10.1007/BF01614224
D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, Int. J. Theor. Phys. 39, 2717 (2000). arXiv:quant-ph/0002048
F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015a). https://doi.org/10.1073/pnas.1411728112
M. Horodecki, J. Oppenheim. Nat. Commun. 4 (2013). https://doi.org/10.1038/ncomms3059
M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Phys. Rev. X 5, 021001 (2015a). https://doi.org/10.1103/PhysRevX.5.021001
P. Faist, R. Renner, Phys. Rev. X 8, 021011 (2018). https://doi.org/10.1103/PhysRevX.8.021011
N. Yunger Halpern, J.M. Renes, Phys. Rev. E 93, 022126 (2016). https://doi.org/10.1103/PhysRevE.93.022126
N. Yunger Halpern, J. Phys. A: Math. Theor. 51, 094001 (2018). https://doi.org/10.1088/1751-8121/aaa62f
N.Yunger Halpern, P. Faist, J. Oppenheim, A. Winter, Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms12051
Y. Guryanova, S. Popescu, A.J. Short, R. Silva, P. Skrzypczyk, Nat. Comm. 7 (2016). https://doi.org/10.1038/ncomms12049
M. Lostaglio, D. Jennings, T. Rudolph, New J. Phys. 19, 043008 (2017). https://doi.org/10.1088/1367-2630/aa617f
S. Popescu, A.B. Sainz, A.J. Short, A. Winter, Phil. Trans. Roy. Soc. A 376(2123), 20180111 (2018). https://doi.org/10.1098/rsta.2018.0111
G. Gour, D. Jennings, F. Buscemi, R. Duan, I. Marvian, Nat. Commun. 9(5352) (2018). https://doi.org/10.1038/s41467-018-06261-7
F. Reif, Fundamentals of Statistical and Thermal Physics: (Waveland Press, 2009)
C. Adkins, Equilibrium Thermodynamics (Cambridge University Press, Cambridge, 1983)
D. Schroeder, An Introduction to Thermal Physics (Addison Wesley, USA, 2000). https://doi.org/10.1119/1.19116
K. Huang, Statistical Mechanics (Wiley, New York, 1987)
D. Egloff, O.C.O. Dahlsten, R. Renner, V. Vedral, New J. Phys. 17, 073001 (2015). https://doi.org/10.1088/1367-2630/17/7/073001
L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011). https://doi.org/10.1038/nature10123
J. Åberg, Nat. Commun. 4 (2013). https://doi.org/10.1038/ncomms2712
G.E. Crooks, J. Stat. Phys. 90, 1481 (1998). https://doi.org/10.1023/A:1023208217925
B. Piechocinska, Phys. Rev. A 61, 062314 (2000). https://doi.org/10.1103/PhysRevA.61.062314
M. Esposito, C.V. den Broeck, EPL (Europhys. Lett.) 95, 40004 (2011). https://doi.org/10.1209/0295-5075/95/40004
H. Hossein-Nejad, E.J. O’Reilly, A. Olaya-Castro, New J. Phys. 17, 075014 (2015). https://doi.org/10.1088/1367-2630/17/7/075014
R. Gallego, J. Eisert, H. Wilming, New J. Phys. 18, 103017 (2016). https://doi.org/10.1088/1367-2630/18/10/103017
J. Gemmer, J. Anders, New J. Phys. 17, 085006 (2015). https://doi.org/10.1088/1367-2630/17/8/085006
M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015). https://doi.org/10.1103/PhysRevX.5.041011
P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms5185
M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002). https://doi.org/10.1103/PhysRevLett.88.050602
J.G. Richens, L. Masanes, Nat. Commun. 7, 13511 (2016). https://doi.org/10.1038/ncomms13511
J. Åberg, Phys. Rev. X 8, 011019 (2018). https://doi.org/10.1103/PhysRevX.8.011019
Á. M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Phys. Rev. X 6, 041017 (2016). https://doi.org/10.1103/PhysRevX.6.041017
M.P. Woods, N. Ng, S. Wehner (2015). arXiv: 1506.02322
D. Jonathan, M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999). https://doi.org/10.1103/PhysRevLett.83.3566
M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6, 6383 (2015b). https://doi.org/10.1038/ncomms7383
F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics (2015b). https://doi.org/10.1073/pnas.1411728112
K.M. Audenaert, J. Phys. A: Math. Theor. 40, 8127 (2007). https://doi.org/10.1088/1751-8113/40/28/S18
M.P. Mueller, Phys. Rev. X 8, 041051 (2018). https://doi.org/10.1103/PhysRevX.8.041051
Á.M. Alhambra, J. Oppenheim, C. Perry, Phys. Rev. X 6, 041016 (2016). https://doi.org/10.1103/PhysRevX.6.041016
S. Carnot, Reflections on the Motive Power of Fire (1824)
M. Scully, M. Zubairy, G. Agarwal, H. Walther, Science 299, 862 (2003). https://doi.org/10.1126/science.1078955
J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602
N.H.Y. Ng, M.P. Woods, S. Wehner, New J. Phys. 19, 113005 (2017). https://doi.org/10.1088/1367-2630/aa8ced
J. Gemmer, M. Michel, G. Mahler, Quantum thermodynamics (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-70510-9
R. Kosloff, Entropy 15, 2100 (2013). https://doi.org/10.3390/e15062100
R. Alicki, J. Phys. A: Math. Gen. 12, L103 (1979). https://doi.org/10.1088/0305-4470/12/5/007
N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014). https://doi.org/10.1103/PhysRevE.89.032115
N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010). https://doi.org/10.1103/PhysRevLett.105.130401
K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki, Phys. Rev. E 87, 012120 (2013). https://doi.org/10.1103/PhysRevE.87.012120
R. Uzdin, A. Levy, R. Kosloff, Phys. Rev. X 5, 031044 (2015). https://doi.org/10.1103/PhysRevX.5.031044
S. Hilt, E. Lutz, Phys. Rev. A 79, 010101 (2009). https://doi.org/10.1103/PhysRevA.79.010101
H. Peter, G.-L. Ingold, P. Talkner et al., New J. Phys. 10, 115008 (2008). https://doi.org/10.1088/1367-2630/10/11/115008
G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009). https://doi.org/10.1103/PhysRevE.79.061105
P. Calabrese, J. Cardy, Phys. Rev. Lett. 96, 136801 (2006). https://doi.org/10.1103/PhysRevLett.96.136801
M. Cramer, C.M. Dawson, J. Eisert, T.J. Osborne, Phys. Rev. Lett. 100, 030602 (2008). https://doi.org/10.1103/PhysRevLett.100.030602
J. Åberg, Phys. Rev. Lett. 113, 150402 (2014). https://doi.org/10.1103/PhysRevLett.113.150402
A.S. Malabarba, A.J. Short, P. Kammerlander, New J. Phys. 17, 045027 (2015). https://doi.org/10.1088/1367-2630/17/4/045027
M.P. Woods, R. Silva, J. Oppenheim (2016). https://doi.org/10.1007/s00023-018-0736-9
C. Perry, P. Ćwikliński, J. Anders, M. Horodecki, J. Oppenheim, Phys. Rev. X 8, 041049 (2018). https://doi.org/10.1103/PhysRevX.8.041049
M. Lostaglio, Á.M. Alhambra, C. Perry, Quantum 2, 52 (2018). https://doi.org/10.22331/q-2018-02-08-52
N. Yunger Halpern, Toward physical realizations of thermodynamic resource theories, in Information and Interaction: Eddington, Wheeler, and the Limits of Knowledge, ed. by I.T. Durham, D. Rickles (Springer International Publishing, Cham, 2017), pp. 135–166. https://doi.org/10.1007/978-3-319-43760-6
C. Jarzynski, Ann. Rev. Condens. Matter Phys. 2, 329 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140506
M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009). https://doi.org/10.1103/RevModPhys.81.1665
M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). https://doi.org/10.1103/RevModPhys.83.771
U. Seifert, Rep. Prog. Phys. 75 (2012). https://doi.org/10.1088/0034-4885/75/12/126001
G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002). https://doi.org/10.1103/PhysRevLett.89.050601
Y. Utsumi, D.S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, G. Schön, Phys. Rev. B 81, 125331 (2010). https://doi.org/10.1103/PhysRevB.81.125331
T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014). https://doi.org/10.1103/PhysRevLett.113.140601
S. Salek, K. Wiesner, Phys. Rev. A 96, 052114 (2017). https://doi.org/10.1103/PhysRevA.96.052114
A.M. Alhambra, S. Wehner, M.M. Wilde, M.P. Woods, Phys. Rev. A 97(6), 062114 (2018). https://doi.org/10.1103/PhysRevA.97.062114
Acknowledgements
N.N. acknowledges funding from the Alexander von Humboldt foundation. M.W. acknowledges the Swiss National Science Foundation (SNSF) via the NCCR QSIT. M.W. would like to acknowledge the COST MP1209 network “Thermodynamics in the quantum regime”, to which he was a member and from which part of the research reviewed in this chapter was made possible.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ng, N.H.Y., Woods, M.P. (2018). Resource Theory of Quantum Thermodynamics: Thermal Operations and Second Laws. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-99046-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99045-3
Online ISBN: 978-3-319-99046-0
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)