Skip to main content

The Reaction Coordinate Mapping in Quantum Thermodynamics

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

We present an overview of the reaction coordinate approach to handling strong system-reservoir interactions in quantum thermodynamics. This technique is based on incorporating a collective degree of freedom of the reservoir (the reaction coordinate) into an enlarged system Hamiltonian (the supersystem), which is then treated explicitly. The remaining residual reservoir degrees of freedom are traced out in the usual perturbative manner. The resulting description accurately accounts for strong system-reservoir coupling and/or non-Markovian effects over a wide range of parameters, including regimes in which there is a substantial generation of system-reservoir correlations. We discuss applications to both discrete stroke and continuously operating heat engines, as well as perspectives for additional developments. In particular, we find narrow regimes where strong coupling is not detrimental to the performance of continuously operating heat engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that there is a subtlety in the strong-coupling cycle. When coupled, the interaction between the system and the reservoir pushes the latter out of thermal equilibrium. We assume that once the system and reservoir are decoupled at the end of the stroke, the reservoir rapidly relaxes back to equilibrium. Hence, when the system comes to be coupled to the reservoir again on the next cycle, the reservoir is thermal once more. The re-thermalisation of the reservoirs entails accounting for some extra energetic contributions around the cycle, as described in detail in [22].

References

  1. Y. Liu, Y. Zheng, W. Gong, W. Gao, T. Lü, Phys. Lett. A 365, 495 (2007). https://doi.org/10.1016/j.physleta.2007.02.005

    Article  ADS  Google Scholar 

  2. F. Nesi, E. Paladino, M. Thorwart, M. Grifoni, Europhys. Lett. 80, 40005 (2007). https://doi.org/10.1209/0295-5075/80/40005

    Article  ADS  Google Scholar 

  3. C. Hörhammer, H. Büttner, J. Stat. Phys. 133, 1161 (2008). https://doi.org/10.1007/s10955-008-9640-x

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009). https://doi.org/10.1103/PhysRevLett.102.210401

    Article  ADS  Google Scholar 

  5. L. Nicolin, D. Segal, Phys. Rev. B 84, 161414 (2011). https://doi.org/10.1103/PhysRevB.84.161414

    Article  ADS  Google Scholar 

  6. S. Deffner, E. Lutz, Phys. Rev. Lett. 107, 140404 (2011). https://doi.org/10.1103/PhysRevLett.107.140404

    Article  ADS  Google Scholar 

  7. J. Hausinger, M. Grifoni, Phys. Rev. A 83, 030301 (2011). https://doi.org/10.1103/PhysRevA.83.030301

    Article  ADS  Google Scholar 

  8. L. Pucci, M. Esposito, L. Peliti, J. Stat. Mech. Theory Exp. 2013, P04005 (2013). https://doi.org/10.1088/1742-5468/2013/04/P04005

  9. G. Schaller, T. Krause, T. Brandes, M. Esposito, New J. Phys. 15, 033032 (2013). https://doi.org/10.1088/1367-2630/15/3/033032

    Article  ADS  Google Scholar 

  10. J. Ankerhold, J.P. Pekola, Phys. Rev. B 90, 075421 (2014). https://doi.org/10.1103/PhysRevB.90.075421

    Article  ADS  Google Scholar 

  11. J. Iles-Smith, N. Lambert, A. Nazir, Phys. Rev. A 90, 032114 (2014). https://doi.org/10.1103/PhysRevA.90.032114

    Article  ADS  Google Scholar 

  12. R. Gallego, A. Riera, J. Eisert, New J. Phys. 16, 125009 (2014). https://doi.org/10.1088/1367-2630/16/12/125009

  13. C. Wang, J. Ren, J. Cao, Sci. Rep. 5, 11787 (2015). https://doi.org/10.1038/srep11787

    Article  ADS  Google Scholar 

  14. M. Esposito, M.A. Ochoa, M. Galperin, Phys. Rev. Lett. 114, 080602 (2015a). https://doi.org/10.1103/PhysRevLett.114.080602

    Article  ADS  Google Scholar 

  15. M. Esposito, M.A. Ochoa, M. Galperin, Phys. Rev. B 92, 235440 (2015b). https://doi.org/10.1103/PhysRevB.92.235440

    Article  ADS  Google Scholar 

  16. D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, J. Phys. Chem. Lett. 6, 3477 (2015). https://doi.org/10.1021/acs.jpclett.5b01404

    Article  Google Scholar 

  17. M. Carrega, P. Solinas, A. Braggio, M. Sassetti, U. Weiss, New J. Phys. 17, 045030 (2015). https://doi.org/10.1088/1367-2630/17/4/045030

  18. P. Strasberg, G. Schaller, N. Lambert, T. Brandes, New J. Phys. 18, 073007 (2016). https://doi.org/10.1088/1367-2630/18/7/073007

    Article  ADS  Google Scholar 

  19. G. Katz, R. Kosloff, Entropy 18, 186 (2016). https://doi.org/10.3390/e18050186

    Article  ADS  Google Scholar 

  20. J. Cerrillo, M. Buser, T. Brandes, Phys. Rev. B 94, 214308 (2016). https://doi.org/10.1103/PhysRevB.94.214308

    Article  ADS  Google Scholar 

  21. U. Seifert, Phys. Rev. Lett. 116, 020601 (2016). https://doi.org/10.1103/PhysRevLett.116.020601

    Article  ADS  Google Scholar 

  22. D. Newman, F. Mintert, A. Nazir, Phys. Rev. E 95, 032139 (2017). https://doi.org/10.1103/PhysRevE.95.032139

    Article  ADS  Google Scholar 

  23. P. Strasberg, M. Esposito, Phys. Rev. E 95, 062101 (2017). https://doi.org/10.1103/PhysRevE.95.062101

    Article  ADS  Google Scholar 

  24. H.J.D. Miller, J. Anders, Phys. Rev. E 95, 062123 (2017). https://doi.org/10.1103/PhysRevE.95.062123

    Article  ADS  Google Scholar 

  25. A. Mu, B.K. Agarwalla, G. Schaller, D. Segal, New J. Phys. 19, 123034 (2017). https://doi.org/10.1088/1367-2630/aa9b75

    Article  ADS  Google Scholar 

  26. C. Jarzynski, Phys. Rev. X 7, 011008 (2017). https://doi.org/10.1103/PhysRevX.7.011008

    Article  Google Scholar 

  27. N. Freitas, J.P. Paz, Phys. Rev. E 95, 012146 (2017). https://doi.org/10.1103/PhysRevE.95.012146

    Article  ADS  Google Scholar 

  28. M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, J. Eisert, Phys. Rev. Lett. 120, 120602 (2018). https://doi.org/10.1103/PhysRevLett.120.120602

    Article  ADS  Google Scholar 

  29. R.S. Burkey, C.D. Cantrell, J. Opt. Soc. Am. B 1, 169 (1984). https://doi.org/10.1364/JOSAB.1.000169

    Article  ADS  Google Scholar 

  30. A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985). https://doi.org/10.1063/1.449017

    Article  ADS  Google Scholar 

  31. R. Martinazzo, B. Vacchini, K.H. Hughes, I. Burghardt, J. Chem. Phys. 134, 011101 (2011). https://doi.org/10.1063/1.3532408

    Article  ADS  Google Scholar 

  32. M.P. Woods, R. Groux, A.W. Chin, S.F. Huelga, M.B. Plenio, J. Math. Phys. 55, 032101 (2014). https://doi.org/10.1063/1.4866769

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Schaller, J. Cerrillo, G. Engelhardt, P. Strasberg, Phys. Rev. B 97, 195104 (2018). https://doi.org/10.1103/PhysRevB.97.195104

    Article  ADS  Google Scholar 

  34. P. Strasberg, G. Schaller, T.L. Schmidt, M. Esposito, Phys. Rev. B 97, 205405 (2018). https://doi.org/10.1103/PhysRevB.97.205405

    Article  ADS  Google Scholar 

  35. S. Restrepo, J. Cerrillo, P. Strasberg, G. Schaller, New J. Phys. (2018). https://doi.org/10.1088/1367-2630/aac583

    Article  Google Scholar 

  36. J. Iles-Smith, A.G. Dijkstra, N. Lambert, A. Nazir, J. Chem. Phys. 144, 044110 (2016). https://doi.org/10.1063/1.4940218

    Article  ADS  Google Scholar 

  37. J. Huh, S. Mostame, T. Fujita, M.-H. Yung, A. Aspuru-Guzik, New J. Phys. 16, 123008 (2014). https://doi.org/10.1088/1367-2630/16/12/123008

    Article  ADS  Google Scholar 

  38. M.P. Woods, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 115, 130401 (2015). https://doi.org/10.1103/PhysRevLett.115.130401

    Article  ADS  Google Scholar 

  39. M.P. Woods, M.B. Plenio, J. Math. Phys. 57, 022105 (2016). https://doi.org/10.1063/1.4940436

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016). https://doi.org/10.1088/0034-4885/79/5/056001

    Article  ADS  Google Scholar 

  41. R. Dümcke, H. Spohn, Z. Phys. B 34, 419 (1979). https://doi.org/10.1007/BF01325208

  42. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  43. K. Le Hur, Phys. Rev. B 85, 140506 (2012). https://doi.org/10.1103/PhysRevB.85.140506

    Article  Google Scholar 

  44. M. Goldstein, M.H. Devoret, M. Houzet, L.I. Glazman, Phys. Rev. Lett. 110, 017002 (2013). https://doi.org/10.1103/PhysRevLett.110.017002

    Article  ADS  Google Scholar 

  45. B. Peropadre, D. Zueco, D. Porras, J.J. García-Ripoll, Phys. Rev. Lett. 111, 243602 (2013). https://doi.org/10.1103/PhysRevLett.111.243602

    Article  ADS  Google Scholar 

  46. A. Nazir, D.P.S. McCutcheon, J. Phys. Condens. Matter 28, 103002 (2016). https://doi.org/10.1088/0953-8984/28/10/103002

  47. R. Kosloff, A. Levy, Annu. Rev. Phys. Chem. 65, 365 (2014). https://doi.org/10.1146/annurev-physchem-040513-103724

    Article  ADS  Google Scholar 

  48. M. Esposito, K. Lindenberg, C.V. den Broeck, Europhys. Lett. 85, 60010 (2009). https://doi.org/10.1209/0295-5075/85/60010

    Article  ADS  Google Scholar 

  49. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-73564-9

  50. G.E. Topp, T. Brandes, G. Schaller, Europhys. Lett. 110, 67003 (2015). https://doi.org/10.1209/0295-5075/110/67003

    Article  ADS  Google Scholar 

  51. A. Bruch, M. Thomas, S. Viola Kusminskiy, F. von Oppen, A. Nitzan, Phys. Rev. B 93, 115318 (2016). https://doi.org/10.1103/PhysRevB.93.115318

    Article  ADS  Google Scholar 

  52. D.Y. Baines, T. Meunier, D. Mailly, A.D. Wieck, C. Bäuerle, L. Saminadayar, P.S. Cornaglia, G. Usaj, C.A. Balseiro, D. Feinberg, Phys. Rev. B 85, 195117 (2012). https://doi.org/10.1103/PhysRevB.85.195117

    Article  ADS  Google Scholar 

  53. T. Hensgens, T. Fujita, L. Janssen, X. Li, C.J.V. Diepen, C. Reichl, W. Wegscheider, S.D. Sarma, L.M.K. Vandersypen, Nature 548, 70 (2017). https://doi.org/10.1038/nature23022

    Article  ADS  Google Scholar 

  54. J.C. Bayer, T. Wagner, E.P. Rugeramigabo, R.J. Haug, Phys. Rev. B 96, 235305 (2017). https://doi.org/10.1103/PhysRevB.96.235305

    Article  ADS  Google Scholar 

  55. C.V. den Broeck, Phys. Rev. Lett. 95, 190602 (2005). https://doi.org/10.1103/PhysRevLett.95.190602

    Article  Google Scholar 

  56. A. Gomez-Marin, J.M. Sancho, Phys. Rev. E 74, 062102 (2006). https://doi.org/10.1103/PhysRevE.74.062102

    Article  ADS  Google Scholar 

  57. S. Sheng, Z.C. Tu, J. Phys. Math. Theor. 46, 402001 (2013). https://doi.org/10.1088/1751-8113/46/40/402001

    Article  Google Scholar 

Download references

Acknowledgements

G.S. gratefully acknowledges discussions with J. Cerrillo, N. Martensen, S. Restrepo, and P. Strasberg and financial support by the DFG (GRK 1558, SFB 910, SCHA 1646/3-1, BR 1528/9-1).

A.N. would like to thank D. Newman, F. Mintert, J. Iles-Smith, N. Lambert, Z. Blunden-Codd and V. Jouffrey for discussions. A.N. is supported by the Engineering and Physical Sciences Research Council, grant no. EP/N008154/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Nazir .

Editor information

Editors and Affiliations

Appendices

Appendix A: Heisenberg Equations for the Phonon Mapping

The Heisenberg equations of motion for a system observable \(A=A^\dagger \) read in the original representation

$$\begin{aligned} \dot{A}&= \mathrm {i}S_1(t) + \mathrm {i}S_2(t) \sum _k \left( h_k a_k + h_k^* a_k^\dagger \right) \,,\qquad S_1(t) = [H_S, A]\,,\qquad S_2(t) = [S, A]\,,\nonumber \\\dot{a}_k&= -\mathrm {i}\omega _k a_k -\mathrm {i}h_k^* S\,,\qquad \dot{a}_k^\dagger = +\mathrm {i}\omega _k a_k^\dagger + \mathrm {i}h_k S\,. \end{aligned}$$
(A1)

We now Fourier-transform these equations according to \(\int [\ldots ] e^{+\mathrm {i}z t} dt\) with the convention \(\mathfrak {I}z > 0\). In z-space, the creation and annihilation operators are no longer adjoint to each other, but we will keep the \(\dagger \)-notation. This yields the algebraic equations (convolution theorem)

$$\begin{aligned} \mathrm {i}z A(z)&= \mathrm {i}S_1(z) + \frac{\mathrm {i}}{2\pi } \int S_2(z') \sum _k \left[ h_k a_k(z-z') + h_k^* a_k^\dagger (z-z')\right] dz'\,,\nonumber \\\mathrm {i}z a_k(z)&= -\mathrm {i}\omega _k a_k(z) -\mathrm {i}h_k^* S(z)\,,\qquad \mathrm {i}z a_k^\dagger (z) = +\mathrm {i}\omega _k a_k^\dagger (z) + \mathrm {i}h_k S(z)\,. \end{aligned}$$
(A2)

We can solve the last two equations \(a_k(z) = -\frac{h_k^*}{z+\omega _k} S(z)\) and \(a_k^\dagger (z) = +\frac{h_k}{z-\omega _k} S(z)\), and insert them into the first

$$\begin{aligned} z A(z)&= S_1(z)+ \frac{1}{2\pi } \int S_2(z') \left[ \sum _k \frac{-{\left| h_k \right| }^2}{z-z'+\omega _k} + \sum _k \frac{+{\left| h_k \right| }^2}{z-z'-\omega _k}\right] S(z-z') dz'\nonumber \\&= S_1(z) + \frac{1}{2\pi } \int S_2(z') \left[ \frac{1}{\pi } \int _0^\infty \frac{\omega \Gamma ^{(0)}(\omega )}{(z-z')^2-\omega ^2} d\omega \right] S(z-z') dz'\nonumber \\&= S_1(z) - \frac{1}{2\pi } \int S_2(z') \frac{1}{2} W^{(0)}(z-z') S(z-z') dz'\,. \end{aligned}$$
(A3)

Here, we have in the first step used the fact that the harmonic oscillator frequencies \(\omega _k\) are by construction all positive and we have introduced the Cauchy transform

$$\begin{aligned} W^{(n)}(z) = \frac{2}{\pi } \int _0^\infty \frac{\omega \Gamma ^{(n)}(\omega )}{\omega ^2-z^2} d\omega = \frac{1}{\pi } \int _{-\infty }^{+\infty } \frac{\Gamma ^{(n)}(\omega )}{\omega -z} d\omega \,, \end{aligned}$$
(A4)

where the last equality sign holds for analytic continuation as an odd function \(\Gamma (-\omega )=-\Gamma (+\omega )\). In particular, we note the important property

$$\begin{aligned} \Gamma ^{(n)}(\omega ) = \lim _{\epsilon \rightarrow 0^+} \mathfrak {I}W^{(n)}(\omega +\mathrm {i}\epsilon )\,. \end{aligned}$$
(A5)

Similarly, we can derive the Heisenberg equations of motion in the mapped representation, and Fourier-transform them according to the same prescription, yielding

$$\begin{aligned} z A(z)&= S_1(z) + \frac{\lambda }{2\pi } \int S_2(z') \left[ b(z-z') + b^\dagger (z-z')\right] dz'\,,\nonumber \\z b(z)&= -\lambda S(z) - \Omega b(z) - \sum _k \left[ H_k b_k(z) + H_k^* b_k^\dagger (z)\right] \,,\nonumber \\z b^\dagger (z)&= +\lambda S(z) + \Omega b^\dagger (z) + \sum _k \left[ H_k b_k(z) + H_k^* b_k^\dagger (z)\right] \,,\nonumber \\z b_k(z)&= -\Omega _k b_k(z) - H_k^* \left[ b(z) + b^\dagger (z)\right] \,,\qquad z b_k^\dagger (z) = +\Omega _k b_k^\dagger (z) + H_k \left[ b(z) + b^\dagger (z)\right] \,. \end{aligned}$$
(A6)

Again, we follow the approach of successively eliminating the \(b_k(z)\), \(b_k^\dagger (z)\), and then the b(z), \(b^\dagger (z)\) variables, yielding for the remaining equation

$$\begin{aligned} z A(z) = S_1(z) + \frac{1}{2\pi } \int S_2(z') \frac{2 \lambda ^2 \Omega }{(z-z')^2 - \Omega ^2 + \Omega W^{(1)}(z-z')} S(z-z') dz'\,. \end{aligned}$$
(A7)

Comparing this with the original representation, we can infer a relation between \(W^{(0)}(z)\) and \(W^{(1)}(z)\), which can be used to obtain the transformed spectral density

$$\begin{aligned} \Gamma ^{(1)}(\omega )&= -\lim _{\epsilon \rightarrow 0^+} \mathfrak {I}\frac{4\lambda ^2}{W^{(0)}(\omega +\mathrm {i}\epsilon )} = \frac{+4 \lambda ^2 \Gamma ^{(0)}(\omega )}{\left[ \frac{1}{\pi }\mathcal{P} \int \frac{\Gamma ^{(0)}(\omega ')}{\omega -\omega '} d\omega '\right] ^2 + \left[ \Gamma ^{(0)}(\omega )\right] ^2}\,. \end{aligned}$$
(A8)

Appendix B: Heisenberg Equations for the Particle Mapping

Now, the Heisenberg equations of motion for a system observable \(A=A^\dagger \) read in the original representation

$$\begin{aligned} \dot{A}&= \mathrm {i}S_1(t) + \mathrm {i}S_2(t) \sum _k h_k^* a_k^\dagger - \mathrm {i}S_2^\dagger (t) \sum _k h_k a_k\,,\quad S_1(t) = [H_S, A]\,,\quad S_2(t) = [S, A]\,,\nonumber \\\dot{a}_k&= -\mathrm {i}\omega _k a_k -\mathrm {i}h_k^* S\,,\qquad \dot{a}_k^\dagger = +\mathrm {i}\omega _k a_k^\dagger + \mathrm {i}h_k S^\dagger \,. \end{aligned}$$
(B1)

Fourier-transformation yields

$$\begin{aligned} z A(z)&= S_1(z) + \frac{1}{2\pi } \int \left[ S_2(z') \sum _k h_k^* a_k^\dagger (z-z') - S_2^\dagger (z') \sum _k h_k a_k(z-z')\right] dz'\,,\nonumber \\z a_k(z)&= -\omega _k a_k(z) - h_k^* S(z)\,,\qquad z a_k^\dagger (z) = +\omega _k a_k^\dagger (z) + h_k S^\dagger (z)\,. \end{aligned}$$
(B2)

Inserting the solutions of the last two equations into the first we get

$$\begin{aligned} z A(z) = S_1(z) + \frac{1}{2\pi } \int \left[ S_2(z') \sum _k \frac{{\left| h_k \right| }^2}{z-z'-\omega _k} S^\dagger (z-z') + S_2^\dagger (z') \sum _k \frac{{\left| h_k \right| }^2}{z-z'+\omega _k} S(z-z')\right] \,. \end{aligned}$$
(B3)

In the mapped representation, we have

$$\begin{aligned} \dot{A}&= \mathrm {i}S_1(t) + \mathrm {i}\lambda S_2(t) b^\dagger - \mathrm {i}\lambda S_2^\dagger (t) b\,,\nonumber \\\dot{b}&= -\mathrm {i}\lambda S - \mathrm {i}\Omega b - \mathrm {i}\sum _k H_k b_k\,,\qquad \dot{b}^\dagger = +\mathrm {i}\lambda S^\dagger + \mathrm {i}\Omega b^\dagger + \mathrm {i}\sum _k H_k^* b_k^\dagger \,,\nonumber \\\dot{b}_k&= -\mathrm {i}H_k^* b-\mathrm {i}\Omega _k b_k\,,\qquad \dot{b}_k^\dagger = +\mathrm {i}H_k b^\dagger + \mathrm {i}\Omega _k b_k^\dagger \,, \end{aligned}$$
(B4)

such that Fourier transformation yields

$$\begin{aligned} z A(z)&= S_1(z) + \frac{\lambda }{2\pi } \int \left[ S_2(z') b^\dagger (z-z') - S_2^\dagger (z') b(z-z')\right] dz'\,,\nonumber \\z b(z)&= - \lambda S(z) - \Omega b(z) - \sum _k H_k b_k(z)\,,\qquad z b^\dagger (z) = +\lambda S^\dagger (z) + \Omega b^\dagger (z) + \sum _k H_k^* b_k^\dagger (z)\,,\nonumber \\z b_k(z)&= -H_k^* b(z) - \Omega _k b_k(z)\,,\qquad z b_k^\dagger (z) = +H_k b^\dagger (z) + \Omega _k b_k^\dagger (z)\,. \end{aligned}$$
(B5)

Successive elimination of the last four equations yields for the remaining one

$$\begin{aligned} z A(z) =&S_1(z)\\&+ \frac{\lambda }{2\pi } \int \left[ S_2(z') \frac{+\lambda }{z-z'-\Omega -\sum _k \frac{{\left| H_k \right| }^2}{z-z' -\Omega _k}} S^\dagger (z-z')\right. \nonumber \\&+ \left. S_2^\dagger (z') \frac{\lambda }{z-z'+\Omega -\sum _k \frac{{\left| H_k \right| }^2}{z-z' +\Omega _k}} S(z-z')\right] \,.\nonumber \end{aligned}$$
(B6)

From comparison with the first representation, we conclude

$$\begin{aligned} \sum _k \frac{{\left| h_k \right| }^2}{z-\omega _k} = \frac{\lambda ^2}{z-\Omega -\sum _k \frac{{\left| H_k \right| }^2}{z-\Omega _k}}\,,\qquad \sum _k \frac{{\left| h_k \right| }^2}{z+\omega _k} = \frac{\lambda ^2}{z+\Omega -\sum _k \frac{{\left| H_k \right| }^2}{z+\Omega _k}}\,, \end{aligned}$$
(B7)

where the second equation just encodes the first at \(-z\) and is therefore not independent.

From realizing that

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \frac{1}{2\pi } \int _0^\infty \frac{\Gamma (\omega ')}{\omega -\omega '+\mathrm {i}\epsilon } d\omega ' {\mathop {=}\limits ^{\omega >0}} \frac{1}{2\pi } \mathcal{P} \int _0^\infty \frac{\Gamma (\omega ')}{\omega -\omega '} d\omega ' - \frac{\mathrm {i}}{2} \Gamma (\omega )\,, \end{aligned}$$
(B8)

we can use e.g. the first of these relations to infer a mapping relation between the spectral densities,

$$\begin{aligned} \Gamma ^{(1)}(\omega ) = \frac{4 \lambda ^2 \Gamma ^{(0)}(\omega )}{\left[ \frac{1}{\pi }\mathcal{P}\int _0^\infty \frac{\Gamma ^{(0)}(\omega ')}{\omega -\omega '} d\omega '\right] ^2 + \left[ \Gamma ^{(0)}(\omega )\right] ^2}\,, \end{aligned}$$
(B9)

where \(\omega >0\) is assumed throughout.

Appendix C: Heisenberg Equations for Fermionic Reservoirs

To avoid case distinctions on whether the system operator A commutes or anti-commutes with the coupling operator, we just consider the Heisenberg equations for the creation and annihilation operators. In the original representation, they become

$$\begin{aligned} \dot{c} = \mathrm {i}[H_S, c] + \mathrm {i}\sum _k t_k c_k = \mathrm {i}S(t) + \mathrm {i}\sum _k t_k c_k\,,\qquad \dot{c}_k = \mathrm {i}t_k^* c - \mathrm {i}\epsilon _k c_k\,, \end{aligned}$$
(C1)

and similarly for the creation operators. Since at this level they do not mix, we consider only the annihilation operators. Fourier-transformation yields

$$\begin{aligned} z c(z) = S(z) + \sum _k t_k c_k(z)\,,\qquad z c_k(z) = t_k^* c(z) - \epsilon _k c_k(z)\,. \end{aligned}$$
(C2)

Eliminating the second equation then gives

$$\begin{aligned} z c(z) = S_1(z) + \sum _k \frac{{\left| t_k \right| }^2}{z+\epsilon _k} c(z)\,. \end{aligned}$$
(C3)

In contrast, the mapped representation yields

$$\begin{aligned} \dot{c} = \mathrm {i}S(t) + \mathrm {i}\lambda d\,,\qquad \dot{d} = -\mathrm {i}\lambda c - \mathrm {i}\epsilon d + \mathrm {i}\sum _k T_k d_k\,,\qquad \dot{d}_k = \mathrm {i}T_k^* d - \mathrm {i}\epsilon _k d_k\,. \end{aligned}$$
(C4)

Fourier-transforming and eliminating the non-system variables then gives

$$\begin{aligned} z c(z) = S(z) - \frac{\lambda ^2}{z+\epsilon -\sum _k \frac{{\left| T_k \right| }^2}{z+\epsilon _k}} c(z)\,, \end{aligned}$$
(C5)

and from comparison we get the relation

$$\begin{aligned} \sum _k \frac{{\left| t_k \right| }^2}{z+\epsilon _k} = - \frac{\lambda ^2}{z+\epsilon -\sum _k \frac{{\left| T_k \right| }^2}{z+\epsilon _k}}\,. \end{aligned}$$
(C6)

Converting the sums to integrals and evaluating at \(z=-\omega +\mathrm {i}\delta \) when \(\delta \rightarrow 0^+\) we obtain a mapping relation between the fermionic spectral densities:

$$\begin{aligned} \Gamma ^{(1)}(\omega ) = \frac{4 \lambda ^2 \Gamma ^{(0)}(\omega )}{\left[ \frac{1}{\pi } \mathcal{P}\int \frac{\Gamma ^{(0)}(\omega ')}{\omega -\omega '} d\omega '\right] ^2 + \left[ \Gamma ^{(0)}(\omega )\right] ^2}\,. \end{aligned}$$
(C7)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazir, A., Schaller, G. (2018). The Reaction Coordinate Mapping in Quantum Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_23

Download citation

Publish with us

Policies and ethics