Skip to main content

Ancilla-Assisted Measurement of Quantum Work

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to measure the work distribution: a Ramsey technique to measure the characteristic function and a positive operator valued measure (POVM) scheme to directly measure the work probability distribution. Then, we show that these two ideas can be understood in a unified framework for assessing work fluctuations through a generic quantum detector and describe two protocols that are able to yield complementary information. This allows us also to highlight how quantum work is affected by the presence of coherences in the system’s initial state. Finally, we describe physical implementations and experimental realisations of the first two schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997). https://doi.org/10.1103/PhysRevLett.78.2690

    Article  ADS  Google Scholar 

  2. G.E. Crooks, Phys. Rev. E 60, 2721 (1999). https://doi.org/10.1103/PhysRevE.60.2721

    Article  ADS  Google Scholar 

  3. J. Kurchan (2000), arXiv:cond-mat/0007360

  4. H. Tasaki (2000), arXiv:cond-mat/0009244

  5. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). https://doi.org/10.1103/RevModPhys.83.771

    Article  ADS  Google Scholar 

  6. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009). https://doi.org/10.1103/RevModPhys.81.1665

    Article  ADS  Google Scholar 

  7. P.A.M. Dirac, The Principles of Quantum Mechanics. The International Series of Monographs on Physics, vol. 27, 4th edn. (Clarendon Press, Oxford, 1967)

    Google Scholar 

  8. A. Engel, R. Nolte, EPL (Europhys. Lett.) 79, 10003 (2007). https://doi.org/10.1209/0295-5075/79/10003

  9. A.E. Allahverdyan, Phys. Rev. E 90, 032137 (2014). https://doi.org/10.1103/PhysRevE.90.032137

  10. L. Fusco, S. Pigeon, T.J.G. Apollaro, A. Xuereb, L. Mazzola, M. Campisi, A. Ferraro, M. Paternostro, G. De Chiara, Phys. Rev. X 4, 031029 (2014). https://doi.org/10.1103/PhysRevX.4.031029

    Article  Google Scholar 

  11. L. Villa, G. De Chiara, Quantum 2, 42 (2018). https://doi.org/10.22331/q-2018-01-04-42

  12. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007). https://doi.org/10.1103/PhysRevE.75.050102

    Article  ADS  Google Scholar 

  13. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009). https://doi.org/10.1103/PhysRevLett.102.210401

    Article  ADS  Google Scholar 

  14. M. Carrega, P. Solinas, M. Sassetti, U. Weiss, Phys. Rev. Lett. 116, 240403 (2016). https://doi.org/10.1103/PhysRevLett.116.240403

    Article  ADS  Google Scholar 

  15. A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014). https://doi.org/10.1103/PhysRevLett.113.250601

    Article  ADS  Google Scholar 

  16. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667

  17. L.K. Grover, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96 (ACM, New York, NY, USA, 1996), pp. 212–219. https://doi.org/10.1145/237814.237866

  18. M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017). https://doi.org/10.1103/PhysRevLett.118.070601

    Article  ADS  Google Scholar 

  19. M. Hayashi, H. Tajima, Phys. Rev. A 95, 032132 (2017). https://doi.org/10.1103/PhysRevA.95.032132

    Article  ADS  Google Scholar 

  20. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013). https://doi.org/10.1103/PhysRevLett.110.230601

    Article  ADS  Google Scholar 

  21. L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013). https://doi.org/10.1103/PhysRevLett.110.230602

    Article  ADS  Google Scholar 

  22. T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014). https://doi.org/10.1103/PhysRevLett.113.140601

    Article  ADS  Google Scholar 

  23. G. De Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015). https://doi.org/10.1088/1367-2630/17/3/035004

  24. F. Cerisola, Y. Margalit, S. Machluf, A.J. Roncaglia, J.P. Paz, R. Folman, Nat. Commun. 8, 1241 (2017). https://doi.org/10.1038/s41467-017-01308-7

    Article  ADS  Google Scholar 

  25. L. Levitov, G. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz. [JETP Lett.] 58, 230 (1993)

    Google Scholar 

  26. L.S. Levitov, H. Lee, G.B. Lesovik, J. Math. Phys. 37, 4845 (1996). https://doi.org/10.1063/1.531672

  27. Y.V. Nazarov, M. Kindermann, Eur. Phys. J. B 35, 413 (2003). https://doi.org/10.1140/epjb/e2003-00293-1

    Article  ADS  Google Scholar 

  28. W. Belzig, Y.V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001). https://doi.org/10.1103/PhysRevLett.87.197006

    Article  ADS  Google Scholar 

  29. W. Belzig, in Quantum Noise in Mesoscopic Physics, ed. by Y.V. Nazarov (Kluwer, Dordrecht, 2003). https://doi.org/10.1007/978-94-010-0089-5

  30. P. Solinas, S. Gasparinetti, Phys. Rev. E 92, 042150 (2015). https://doi.org/10.1103/PhysRevE.92.042150

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Solinas, S. Gasparinetti, Phys. Rev. A 94, 052103 (2016). https://doi.org/10.1103/PhysRevA.94.052103

    Article  ADS  Google Scholar 

  32. P. Solinas, H.J.D. Miller, J. Anders, Phys. Rev. A 96, 052115 (2017). https://doi.org/10.1103/PhysRevA.96.052115

    Article  ADS  Google Scholar 

  33. A.A. Clerk, Phys. Rev. A 84, 043824 (2011). https://doi.org/10.1103/PhysRevA.84.043824

    Article  ADS  Google Scholar 

  34. P.P. Hofer, A.A. Clerk, Phys. Rev. Lett. 116, 013603 (2016). https://doi.org/10.1103/PhysRevLett.116.013603

    Article  ADS  Google Scholar 

  35. P.P. Hofer, Quantum 1, 32 (2017). https://doi.org/10.22331/q-2017-10-12-32

  36. J. von Neumann, Mathematical Foundations of Quantum Mechanics, vol. 2 (Princeton University Press, Princeton, 1955). https://doi.org/10.23943/princeton/9780691178561.001.0001

  37. A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer Science & Business Media, Berlin, 2006). https://doi.org/10.1007/0-306-47120-5

  38. P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016). https://doi.org/10.1103/PhysRevE.93.022131

    Article  ADS  Google Scholar 

  39. J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 EP (2000). https://doi.org/10.1038/35002528

  40. A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones, D.K.L. Oi, V. Vedral, J. Mod. Opt. 47, 2501 (2000). https://doi.org/10.1080/09500340008232177

    Article  ADS  Google Scholar 

  41. M. Paris, J. Rehacek, Quantum State Estimation, 1st edn. (Springer Publishing Company, Incorporated, 2010). https://doi.org/10.1007/b98673

  42. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    Google Scholar 

  43. A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985). https://doi.org/10.1103/PhysRevLett.54.857

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys. 77, 016001 (2014). https://doi.org/10.1088/0034-4885/77/1/016001

  45. A. Bednorz, W. Belzig, Phys. Rev. Lett. 105, 106803 (2010). https://doi.org/10.1103/PhysRevLett.105.106803

    Article  ADS  Google Scholar 

  46. A. Bednorz, W. Belzig, A. Nitzan, New J. Phys. 14, 013009 (2012). https://doi.org/10.1088/1367-2630/14/1/013009

  47. B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 16, 015032 (2014). https://doi.org/10.1088/1367-2630/16/1/015032

  48. G. Watanabe, B.P. Venkatesh, P. Talkner, M. Campisi, P. Hänggi, Phys. Rev. E 89, 032114 (2014). https://doi.org/10.1103/PhysRevE.89.032114

  49. G. Watanabe, B.P. Venkatesh, P. Talkner, Phys. Rev. E 89, 052116 (2014). https://doi.org/10.1103/PhysRevE.89.052116

  50. D. Sokolovski, Phys. Lett. A 379, 1097 (2015). https://doi.org/10.1016/j.physleta.2015.02.018

  51. M. Campisi, R. Blattmann, S. Kohler, D. Zueco, P. Hänggi, New J. Phys. 15, 105028 (2013). https://doi.org/10.1088/1367-2630/15/10/105028

  52. J. Goold, U. Poschinger, K. Modi, Phys. Rev. E 90, 020101 (2014). https://doi.org/10.1103/ PhysRevE.90.020101

  53. T.H. Johnson, F. Cosco, M.T. Mitchison, D. Jaksch, S.R. Clark, Phys. Rev. A 93, 053619 (2016). https://doi.org/10.1103/PhysRevA.93.053619

    Article  ADS  Google Scholar 

  54. S. Machluf, Y. Japha, R. Folman, Nat. Commun. 4, 2424 (2013). https://doi.org/10.1038/ncomms3424

Download references

Acknowledgements

We thank R. Fazio, J. Goold, L. Mazzola, K. Modi, M. Paternostro and J. P. Paz for illuminating discussions. P.S. has received funding from the European Union FP7/2007-2013 under REA Grant Agreement No. 630925, COHEAT, and from MIUR-FIRB2013, Project Coca (Grant No. RBFR1379UX). FC and AJR acknowledge financial support from ANPCyT (PICT 2013-0621 and PICT 2014-3711), CONICET and UBACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele De Chiara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Chiara, G., Solinas, P., Cerisola, F., Roncaglia, A.J. (2018). Ancilla-Assisted Measurement of Quantum Work. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_14

Download citation

Publish with us

Policies and ethics