Skip to main content

Tetraphenylethene Derivatives: A Promising Class of AIE Luminogens—Synthesis, Properties, and Applications

  • Chapter
  • First Online:
Principles and Applications of Aggregation-Induced Emission

Abstract

To overcome the aggregation-caused quenching (ACQ) effect in the aggregated state new photoluminescent materials are required. Among planar aromatic molecules, naphthalene, anthracene, phenanthrene, fluoranthene, fluorine, pyrene, perylene, carbazole, triphenylamine, fluorescein, phenothiazine, cyanine, diketopyrrolopyrrole, perylene diimide, naphthalene diimide, and porphyrins have all been used for a range of important applications; however, they suffer from the ACQ effect. In 2001, a new phenomenon was described—so called aggregation-induced-emission (AIE), where typically small organic molecules, which are weak emitters when fully dissolved in solvents such as toluene, THF, and chloroform, become highly luminescent in the supramolecular aggregated state, as well as in solid films. Among the AIE-active luminophores developed, tetraphenylethene (TPE) derivatives have attracted significant attention due to their weak intermolecular interactions and excellent solubility in organic solvents, with a structure that is susceptible to functionalization on the planar phenyl groups, which may lead to AIE activity. In this chapter, we described in detail the synthesis, properties, and applications of AIE-active TPE derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jabłoński A (1933) Efficiency of anti-stokes fluorescence in dyes. Nature 131:839–840

    Google Scholar 

  2. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    CAS  Google Scholar 

  3. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) About supramolecular assemblies of π-conjugated systems. Chem Rev 105:1491–1546

    CAS  Google Scholar 

  4. Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644

    CAS  Google Scholar 

  5. Hide F, DÍaz-GarcÍa MA, Schwartz BJ, Heeger AJ (1997) New developments in the photonic applications of conjugated polymers. Acc Chem Res 30:430–436

    CAS  Google Scholar 

  6. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    CAS  Google Scholar 

  7. Forster T, Kasper KZ (1954). Phys Chem 1:275

    Google Scholar 

  8. Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, London. 704 Seiten. Preis: 210s

    Google Scholar 

  9. Chaudhuri KD (1959) Concentration quenching of fluorescence in solutions. Z Phys 154:34–42

    CAS  Google Scholar 

  10. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    CAS  Google Scholar 

  11. Zhelev Z, Ohba H, Bakalova R (2006) Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc 128:6324–6325

    CAS  Google Scholar 

  12. Bakalova R, Zhelev Z, Aoki I, Ohba H, Imai Y, Kanno I (2006) Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal Chem 78:5925–5932

    CAS  Google Scholar 

  13. Chen RF, Knutson JR (1988) Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal Biochem 172:61–77

    CAS  Google Scholar 

  14. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 40:4332–4353

    Google Scholar 

  15. Chiang CL, Tseng SM, Chen CT, Hsu CP, Shu CF (2008) Influence of molecular dipoles on the photoluminescence and electroluminescence of dipolar spirobifluorenes. Adv Funct Mater 18:248–257

    CAS  Google Scholar 

  16. Yang J-S, Yan J-L (2008) Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem Commun:1501–1512

    Google Scholar 

  17. Gaylord BS, Wang S, Heeger AJ, Bazan GC (2001) Water-soluble conjugated oligomers: effect of chain length and aggregation on photoluminescence-quenching efficiencies. J Am Chem Soc 123:6417–6418

    CAS  Google Scholar 

  18. Bulović V, Shoustikov A, Baldo MA, Bose E, Kozlov VG, Thompson ME, Forrest SR (1998) Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts. Chem Phys Lett 287:455–460

    Google Scholar 

  19. Moorthy JN, Natarajan P, Venkatakrishnan P, Huang D-F, Chow TJ (2007) Steric inhibition of π-stacking: 1,3,6,8-tetraarylpyrenes as efficient blue emitters in organic light emitting diodes (OLEDs). Org Lett 9:5215–5218

    CAS  Google Scholar 

  20. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun (18):1740–1741

    Google Scholar 

  21. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479

    CAS  Google Scholar 

  22. Mei J, Leung NCL, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940

    CAS  Google Scholar 

  23. Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15:1535–1546

    CAS  Google Scholar 

  24. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46:2441–2453

    CAS  Google Scholar 

  25. Leung NL, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam JW, Tang BZ (2014) Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. Chem Eur J 20:15349–15353

    CAS  Google Scholar 

  26. Nishiuchi T, Tanaka K, Kuwatani Y, Sung J, Nishinaga T, Kim D, Iyoda M (2013) Solvent-induced crystalline-state emission and multichromism of a bent π-surface system composed of dibenzocyclooctatetraene units. Chem Eur J 19:4110–4116

    CAS  Google Scholar 

  27. Yuan C, Saito S, Camacho C, Kowalczyk T, Irle S, Yamaguchi S (2014) Hybridization of a flexible cyclooctatetraene core and rigid aceneimide wings for multiluminescent flapping π systems. Chem Eur J 20:2193–2200

    CAS  Google Scholar 

  28. Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y (2014) Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor–acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons. Angew Chem Int Ed 53:2119–2123

    CAS  Google Scholar 

  29. Liu J, Meng Q, Zhang X, Lu X, He P, Jiang L, Dong H, Hu W (2013) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane. Chem Commun 49:1199–1201

    CAS  Google Scholar 

  30. Kamaldeep KSN, Kaur S, Bhalla V, Kumar M, Gupta A (2014) Pentacenequinone derivatives for preparation of gold nanoparticles: facile synthesis and catalytic application. J Mater Chem A 2:8369–8375

    Google Scholar 

  31. Banal JL, White JM, Ghiggino KP, Wong WWH (2014) Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle. Sci Rep 4:4635

    Google Scholar 

  32. Chen S, Wang H, Hong Y, Tang BZ (2016) Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater Horizons 3:283–293

    CAS  Google Scholar 

  33. Zhao Z, Lam JWY, Tang BZ (2012) Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem 22:23726–23740

    CAS  Google Scholar 

  34. Boissieu PD (1888) New method for the preparation of tetraphenylethylene. J Chem Soc 54:928–972

    Google Scholar 

  35. Wang W, Lin T, Wang M, Liu T-X, Ren L, Chen D, Huang S (2010) Aggregation emission properties of oligomers based on tetraphenylethylene. J Phys Chem B 114:5983–5988

    CAS  Google Scholar 

  36. Schreivogel A, Maurer J, Winter R, Baro A, Laschat S (2006) Synthesis and electrochemical properties of tetrasubstituted tetraphenylethenes. Eur J Org Chem:3395–3404

    Google Scholar 

  37. Hua G, Li Y, Slawin AM, Woollins JD (2007) Stereoselective synthesis of olefins by a reductive coupling reaction. Dalton Trans:1477–1480

    Google Scholar 

  38. Zhang L, Yu X, Zhang L, Zhou X, Lin Y (2014) A simple and practical catalytic electron transfer system composed of TiCl4 and metallic Yb: application in carbonyl olefination and insight into the mechanism. Org Chem Front 1:929–935

    CAS  Google Scholar 

  39. Nadri S, Joshaghani M, Rafiee E (2009) Catalytic performance of a phosphapalladacycle bearing a biphenyl moiety, possessing an sp3 C−Pd bond, toward the heck coupling reaction. Organometallics 28:6281–6287

    CAS  Google Scholar 

  40. Okuma K, Kojima K, Oyama K, Kubo K, Shioji K (2004) Selenobenzophenones and diazoalkanes: isolation of tetraarylethylenes by the reaction of benzophenone hydrazones with diselenium dibromide. Eur J Org Chem:820–825

    Google Scholar 

  41. Tezuka Y, Hashimoto A, Ushizaka K, Imai K (1990) Generation and reactions of novel copper carbenoids through a stoichiometric reaction of copper metal with gem-dichlorides in dimethyl sulfoxide. J Org Chem 55:329–333

    CAS  Google Scholar 

  42. Sajna KV, Srinivas V, Kumara Swamy KC (2010) Efficient palladium-catalyzed double arylation of phosphonoalkynes and diarylalkynes in water: use of a dinuclear palladium (I) catalyst. Adv Synth Catal 352:3069–3081

    CAS  Google Scholar 

  43. Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules. Academic Press, New York

    Google Scholar 

  44. Harabuchi Y, Taketsugu T, Maeda S (2015) Exploration of minimum energy conical intersection structures of small polycyclic aromatic hydrocarbons: toward an understanding of the size dependence of fluorescence quantum yields. Phys Chem Chem Phys 17:22561–22565

    CAS  Google Scholar 

  45. Antsyforov GI, Ivanski AF (2012) Naphthalene: structure, properties and applications. Nova Science Publishers, New York

    Google Scholar 

  46. Yousuf M, Youn S, Yun J, Rasheed L, Valero R, Shi G, Kim KS (2016) Violation of DNA neighbor exclusion principle in RNA recognition. Chem Sci 7:3581–3588

    CAS  Google Scholar 

  47. Sujatha J, Mishra AK (1977) Fluorescence quenching of naphthalene and its substitutions by chloroethanes and -ethylenes. J Lumin 75:135–141

    Google Scholar 

  48. Pospíšil P, Luxem KE, Ener M, Sýkora J, Kocábová J, Gray HB, Vlček A, Hof M (2014) Fluorescence quenching of (Dimethylamino)naphthalene dyes badan and prodan by tryptophan in cytochromes P450 and micelles. J Phys Chem B 118:10085–10091

    Google Scholar 

  49. Nakahira T, Minami C, Iwabuchi S, Kojima K (1979) Static and dynamic quenching of naphthalene fluorescence in 2-vinylnaphthalene/vinylferrocene copolymers. Macromol Chem Phys 180:2245–2250

    CAS  Google Scholar 

  50. Zhou J, Chang Z, Jiang Y, He B, Du M, Lu P, Hong Y, Kwok HS, Qin A, Qiu H, Zhao Z, Tang BZ (2013) From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chem Commun 49:2491–2493

    CAS  Google Scholar 

  51. Zhao Z, Chen S, Chan CYK, Lam JWY, Jim CKW, Lu P, Chang Z, Kwok HS, Qiu H, Tang BZ (2012) A facile and versatile approach to efficient luminescent materials for applications in organic light-emitting diodes. Chem Asian J 7:484–488

    CAS  Google Scholar 

  52. Huang J, Su J-H, Tian H (2012) The development of anthracene derivatives for organic light-emitting diodes. J Mater Chem 22:10977–10989

    CAS  Google Scholar 

  53. Shih PI, Chuang CY, Chien CH, Diau EWG, Shu CF (2007) Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups. Adv Funct Mater 17:3141–3146

    CAS  Google Scholar 

  54. Zhao Z, Lu P, Lam JWY, Wang Z, Chan CYK, Sung HHY, Williams ID, Ma Y, Tang BZ (2011) Molecular anchors in the solid state: restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chem Sci 2:672–675

    CAS  Google Scholar 

  55. Kim S-K, Park Y-I, Kang I-N, Park J-W (2007) New deep-blue emitting materials based on fully substituted ethylene derivatives. J Mater Chem 17:4670–4678

    CAS  Google Scholar 

  56. Kim S-K, Oh S-Y, Park J-W (2008) Co-deposition and tuned blue emission color from new tetraphenylethylene derivatives. Thin Solid Films 517:1349–1353

    CAS  Google Scholar 

  57. Figueira-Duarte TM, Mullen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111:7260–7314

    CAS  Google Scholar 

  58. Zhao Z, Chen S, Lam JWY, Lu P, Zhong Y, Wong KS, Kwok HS, Tang BZ (2010) Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem Commun 46:2221–2223

    CAS  Google Scholar 

  59. Yang J, Qin J, Ren Z, Peng Q, Xie G, Li Z (2017) Pyrene-based blue aiegen: enhanced hole mobility and good el performance in solution-processed OLEDs. Molecules 22:2144. https://doi.org/10.3390/molecules22122144

    Article  CAS  Google Scholar 

  60. Yang J, Li L, Yu Y, Ren Z, Peng Q, Ye S, Li Q, Li Z (2017) Blue pyrene-based AIEgens: inhibited intermolecular π–π stacking through the introduction of substituents with controllable intramolecular conjugation, and high external quantum efficiencies up to 3.46% in non-doped OLEDs. Mater Chem Front 1:91–99

    CAS  Google Scholar 

  61. Zhang K, Wang L, Liang Y, Yang S, Liang J, Cheng F, Chen J (2012) A thermally and electrochemically stable organic hole-transporting material with an adamantane central core and triarylamine moieties. Synth Met 162:490–496

    CAS  Google Scholar 

  62. Thelakkat M (2002) Macromol. Mater Eng 287:442–461

    CAS  Google Scholar 

  63. Shirota Y (2005) Photo- and electroactive amorphous molecular materials-molecular design, syntheses, reactions, properties, and applications. J Mater Chem 15:75–93

    CAS  Google Scholar 

  64. Tao Y, Wang Q, Yang C, Zhong C, Qin J, Ma D (2010) Multifunctional triphenylamine/oxadiazole hybrid as host and exciton-blocking material: high efficiency green phosphorescent OLEDs using easily available and common materials. Adv Funct Mater 20:2923–2929

    CAS  Google Scholar 

  65. Song Y, Di C, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu D (2006) A cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941

    CAS  Google Scholar 

  66. Cravino A, Roquet S, Aleveque O, Leriche P, Frere P, Roncali J (2006) Triphenylamine-oligothiophene conjugated systems as organic semiconductors for opto-electronics. Chem Mater 18:2584–2590

    CAS  Google Scholar 

  67. Yuan WZ, Lu P, Chen SM, Lam JWY, Wang ZM, Liu Y, Kwok HS, Ma YG, Tang BZ (2010) Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv Mater 22:2159–2163

    CAS  Google Scholar 

  68. Liu Y, Chen S, Lam JWY, Lu P, Kwok RTK, Mahtab F, Kwok HS, Tang BZ (2011) Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem Mater 23:2536–2544

    CAS  Google Scholar 

  69. Yuan WZ, Gong Y, Chen S, Shen XY, Lam JWY, Lu P, Lu Y, Wang Z, Hu R, Xie N, Kwok HS, Zhang Y, Sun JZ, Tang BZ (2012) Efficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, photophysical behaviors, and OLED application. Chem Mater 24:1518–1528

    CAS  Google Scholar 

  70. Gong W-L, Wang B, Aldred MP, Li C, Zhang G-F, Chen T, Wang L, Zhu M-Q (2014) Tetraphenylethene-decorated carbazoles: synthesis, aggregation-induced emission, photo-oxidation and electroluminescence. J Mater Chem C 2:7001–7012

    CAS  Google Scholar 

  71. Chang Z, Jiang Y, He B, Chen J, Yang Z, Lu P, Kwok HS, Zhao Z, Qiua H, Tang BZ (2013) Aggregation-enhanced emission and efficient electroluminescence of tetraphenylethene-cored luminogens. Chem Commun 49:594–596

    CAS  Google Scholar 

  72. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    CAS  Google Scholar 

  73. Thomas RJ, Lin JT, Tao YT, Ko CW (2001) Light-emitting carbazole derivatives: potential electroluminescent materials. J Am Chem Soc 123:9404–9411

    CAS  Google Scholar 

  74. Chang C-H, Griniene R, Su Y-D, Yeh C-C, Kao H-C, Grazulevicius JV, Volyniuk D, Grigalevicius S (2015) Efficient red phosphorescent OLEDs employing carbazole-based materials as the emitting host. Dyes Pigments 122:257–263

    CAS  Google Scholar 

  75. Huang J, Yang X, Wang J, Zhong C, Wang L, Qin J, Li Z (2012) New tetraphenylethene-based efficient blue luminophors: aggregation induced emission and partially controllable emitting color. J Mater Chem 22:2478–2484

    CAS  Google Scholar 

  76. Wu W, Yang J, Hua J, Tang J, Zhang L, Long Y, Tian H (2010) Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. J Mater Chem 20:1772–1779

    CAS  Google Scholar 

  77. Qiu X, Lu R, Zhou H, Zhang X, Xu T, Liu X, Zhao Y (2008) Synthesis of phenothiazine-functionalized porphyrins with high fluorescent quantum yields. Tetrahedron Lett 49:7446–7449

    CAS  Google Scholar 

  78. Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42:3453–3488

    CAS  Google Scholar 

  79. Kim SH, Kim HW, Sakong C, Namgoong J, Park SW, Ko MJ, Lee CH, Lee WI, Kim JP (2011) Effect of five-membered heteroaromatic linkers to the performance of phenothiazine-based dye-sensitized solar cells. Org Lett 13:5784–5787

    CAS  Google Scholar 

  80. Huang Z-S, Meier H, Cao D (2016) Phenothiazine-based dyes for efficient dye-sensitized solar cells. J Mater Chem C 4:2404–2426

    CAS  Google Scholar 

  81. Cao D, Peng J, Hong Y, Fang X, Wang L, Meier H (2011) Enhanced performance of the dye-sensitized solar cells with phenothiazine-based dyes containing double D-A branches. Org Lett 13:1610–1613

    CAS  Google Scholar 

  82. Huang JH, Lee KC (2014) Highly stable, solution-processable phenothiazine derivative as hole collection material for organic solar cells. ACS Appl Mater Interfaces 6:7680–7685

    CAS  Google Scholar 

  83. Li Z, Dong Q, Li Y, Xu B, Deng M, Pei J, Zhang J, Chen F, Wen S, Gao Y, Tian W (2011) Design and synthesis of solution processable small molecules towards high photovoltaic performance. J Mater Chem 21:2159–2168

    CAS  Google Scholar 

  84. Kumar S, Singh M, Jou J-H, Ghosh S (2016) Trend breaking substitution pattern of phenothiazine with acceptors as a rational designplatform for blue emitters. J Mater Chem C 4:6769–6777

    CAS  Google Scholar 

  85. Ahn Y, Jang DE, Cha Y-B, Kim M, Ahn K-H, Kim YC (2013) Electroluminescence characteristics of a new green-emitting phenylphenothiazine derivative with phenylbenzimidazole substituent. Bull Kor Chem Soc 34:107–111

    CAS  Google Scholar 

  86. Zhang X, Chi Z, Zhang J, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J (2011) Piezofluorochromic properties and mechanism of an aggregation-induced emission enhancement compound containing N-hexyl-phenothiazine and anthracene moieties. J Phys Chem B 115:7606–7611

    CAS  Google Scholar 

  87. Chen C, Liao J-Y, Chi Z, Xu B, Zhang X, Kuang D-B, Zhang Y, Liu S, Xu J (2012) Effect of polyphenyl-substituted ethylene end-capped groups in metal-free organic dyes on performance of dye-sensitized solar cells. RSC Adv 2:7788–7797

    CAS  Google Scholar 

  88. Zhang G, Sun J, Xue P, Zhang Z, Gong P, Peng J, Lu R (2015) Phenothiazine modified triphenylacrylonitrile derivates: AIE and mechanochromism tuned by molecular conformation. J Mater Chem C 3:2925–2932

    CAS  Google Scholar 

  89. Aizawa N, Tsou C-J, Park IS, Yasuda T (2017) Aggregation-induced delayed fluorescence from phenothiazine containing donor–acceptor molecules for high-efficiency non-doped organic light-emitting diodes. Polym J 49:197–202

    CAS  Google Scholar 

  90. Hrobarikova V, Hrobarik P, Gajdos P, Fitilis I, Fakis M, Persephonis P, Zahradnik P (2010) Benzothiazole-based fluorophores of donor-π-acceptor-π-donor type displaying high two-photon absorption. J Org Chem 75:3053–3068

    CAS  Google Scholar 

  91. Hrobarik P, Hrobarikova V, Sigmundov I, Zahradnik P, Fakis M, Polyzos I, Persephonis P (2011) Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: a route to triphenylamine-based chromophores with enhanced two-photon absorption. J Org Chem 76:8726–8736

    CAS  Google Scholar 

  92. Gautam P, Maragani R, Misra R (2014) Tuning the HOMO–LUMO gap of donor-substituted benzothiazoles. Tetrahedron Lett 55:6827–6830

    CAS  Google Scholar 

  93. Wang Y, Michinobu T (2016) Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor–acceptor polymers in organic electronics. J Mater Chem C 4:6200–6214

    CAS  Google Scholar 

  94. Ma C, Xu B, Xie G, He J, Zhou X, Peng B, Jiang L, Xu B, Tian W, Chi Z, Liu S, Zhang Y, Xu J (2014) An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation−deprotonation control. Chem Commun 50:7374–7377

    CAS  Google Scholar 

  95. Zhao N, Yang Z, Lam JWY, Sung HHY, Xie N, Chen S, Su H, Gao M, Williams ID, Wong KS, Tang BZ (2012) Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chem Commun 48:8637–8639

    CAS  Google Scholar 

  96. Jadhav T, Dhokale B, Mobin SM, Misra R (2015) Mechanochromism and aggregation induced emission in benzothiazole substituted tetraphenylethylenes: a structure function correlation. RSC Adv 5:29878–29884

    Google Scholar 

  97. Keshav K, Kumawat MK, Srivastava R, Ravikanth M (2017) Benzothiazoles-substituted tetraphenylethylenes: synthesis, structure, aggregation-induced emission and biological studies. Mater Chem Front 1:1207–1216

    CAS  Google Scholar 

  98. Chen Q, Jia C, Zhang Y, Du W, Wang Y, Huang Y, Yang Q, Zhang QJ (2017). Mater Chem B 5:7736–7742

    CAS  Google Scholar 

  99. Liu Y, Nie J, Niu J, Meng F, Lin W (2017) Ratiometric fluorescent probe with AIE property for monitoring endogenous hydrogen peroxide in macrophages and cancer cells. Sci Rep 7:7293

    Google Scholar 

  100. Ding D, Goh CC, Feng G, Zhao Z, Liu J, Liu R, Tomczak N, Geng J, Tang BZ, Ng LG et al (2013) Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv Mater 25:6083–6088

    CAS  Google Scholar 

  101. Li K, Zhu Z, Cai P, Liu R, Tomczak N, Ding D, Liu J, Qin W, Zhao Z, Hu Y et al (2013) Organic dots with aggregation-induced emission (AIE dots) characteristics for dual-color cell tracing. Chem Mater 25:4181–4187

    CAS  Google Scholar 

  102. Qin W, Li K, Feng G, Li M, Yang Z, Liu B, Tang BZ (2014) Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging. Adv Funct Mater 24:635–643

    CAS  Google Scholar 

  103. Jadhav T, Dhokale B, Misra R (2015) Effect of the cyano group on solid state photophysical behavior of tetraphenylethene substituted benzothiadiazoles. J Mater Chem C 3:9063–9068

    CAS  Google Scholar 

  104. Grzybowski M, Gryko DT (2015) Diketopyrrolopyrroles: synthesis, reactivity, and optical properties. Adv Opt Mater 3:280–320

    CAS  Google Scholar 

  105. Shen XY, Wang YJ, Zhang H, Qin A, Sun JZ, Tang BZ (2014) Conjugates of tetraphenylethene and diketopyrrolopyrrole: tuning the emission properties with phenyl bridges. Chem Commun 50:8747–8750

    CAS  Google Scholar 

  106. Rananaware A, Gupta A, Li JL, Bilic A, Jones L, Bhargava S, Bhosale SV (2016) A four-directional non-fullerene acceptor based on tetraphenylethylene and diketopyrrolopyrrole functionalities for efficient photovoltaic devices with a high open-circuit voltage of 1.18 V. Chem Commun 52:8522–8525

    CAS  Google Scholar 

  107. Liu S-Y, Liu W-Q, Yuan C-X, Zhong A-G, Han D, Wang B, Shah MN, Shi M-M, Chen H (2016) Diketopyrrolopyrrole-based oligomers accessed via sequential C-H activated coupling for fullerene-free organic photovoltaics. Dyes Pigments 134:139–147

    CAS  Google Scholar 

  108. Jiang T, Li D, Hang Y, Gao Y, Zhang H, Zhao X, Li X, Li B, Qian J, Hua J (2016) Tetraphenylethene end-capped diketopyrrolopyrrole fluorogens with AIE and large two-photon absorption cross-sections features and application in bioimaging. Dyes Pigments 133:201–213

    CAS  Google Scholar 

  109. Sun P, Sun H, Li X, Wang Y, Shan H, Xu J, Zhang C, Xu Z, Chen Z-K, Huang W (2017) Three dimensional multi-arm acceptors based on diketopyrrolopyrrole with (hetero) aromatic cores for non-fullerene organic solar cells without additional treatment. Dyes Pigments 139:421–419

    Google Scholar 

  110. Huang B, Fu Q, Ai Q, Tan L, Chen L, Chen Y (2017) Optimization of Perovskite by 3D twisted diketopyrrolopyrrole for efficient Perovskite solar cells. Mater Chem Front 1:1179–1184

    CAS  Google Scholar 

  111. Wang L, Zhu L, Li L, Cao D (2016) Tetraphenylethene-functionalized diketopyrrolopyrrole solid stateemissive molecules: enhanced emission in the solid state and as a fluorescent probe for cyanide detection. RSC Adv 6:55182–55193

    CAS  Google Scholar 

  112. Wurthner F, Saha-Moller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052

    Google Scholar 

  113. Li C, Wonneberger H (2012) Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv Mater 24:613–636

    CAS  Google Scholar 

  114. Soh N, Ueda T (2011) Perylene bisimide as a versatile fluorescent tool for environmental and biological analysis: a review. Talanta 85:1233–1237

    CAS  Google Scholar 

  115. Zhao Q, Zhang XA, Wei Q, Wang J, Shen XY, Qin A, Sun JZ, Tang BZ (2012) Tetraphenylethene modified perylene bisimide: effect of the number of substituents on AIE performance. Chem Commun 48:11671–11673

    CAS  Google Scholar 

  116. Zhao Q, Zhang S, Liu Y, Mei J, Chen S, Lu P, Qin A, Ma Y, Sun JZ, Tang BZ (2012) Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. J Mater Chem 22:7387–7394

    CAS  Google Scholar 

  117. Zhao Q, Li K, Chen S, Qin A, Ding D, Zhang S, Liu Y, Liu B, Sun JZ, Tang BZ (2012) Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. J Mater Chem 22:15128–15135

    CAS  Google Scholar 

  118. Wang YJ, Li Z, Tong J, Shen XY, Qin A, Sun JZ, Tang BZ (2015) The fluorescence properties and aggregation behavior of tetraphenylethene–perylenebisimide dyads. J Mater Chem C 3:3559–3568

    CAS  Google Scholar 

  119. Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai JYL, Hu H, Ma T, Hu R, Yu D, Huang X, Tang BZ, Yan H (2015) A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv Mater 27:1015–1020

    CAS  Google Scholar 

  120. Kobaisi MA, Bhosale SV, Latham K, Raynor AM, Bhosale SV (2016) Functional naphthalene diimides: synthesis, properties, and applications. Chem Rev 116:11685–11796

    CAS  Google Scholar 

  121. Rananaware A, La DD, Bhosale SV (2015) Solvophobic control aggregation-induced emission of tetraphenylethene-substituted naphthalene diimide via intramolecular charge transfer. RSC Adv 5:63130–63134

    CAS  Google Scholar 

  122. Rananaware A, La DD, Jackson SM, Bhosale SV (2016) Construction of highly efficient near-IR solid emitter based on naphthalene diimide with AIE-active tetraphenylethene periphery. RSC Adv 6:16250–16255

    CAS  Google Scholar 

  123. Ding Y, Zhu W-H, Xie Y (2017) Development of ion chemosensors based on porphyrin analogues. Chem Rev 117:2203–2256

    CAS  Google Scholar 

  124. Rananaware A, Bhosale RS, Ohkubo K, Patil H, Jones LA, Jackson SL, Fukuzumi S, Bhosale SV, Bhosale SV (2015) Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study. J Org Chem 80:3832–3840

    CAS  Google Scholar 

  125. Guo B, Cai X, Xu S, Fateminia SMA, Liu J, Liang J, Feng G, Wu W, Liu B (2016) Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation caused quenching to aggregation-induced emission enhancement. J Mater Chem B 4:4690–4695

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheshanath V. Bhosale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhosale, R.S., Aljabri, M., La, D.D., Bhosale, S.V., Jones, L.A., Bhosale, S.V. (2019). Tetraphenylethene Derivatives: A Promising Class of AIE Luminogens—Synthesis, Properties, and Applications. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_9

Download citation

Publish with us

Policies and ethics