Skip to main content

Ultrasound Transducer Quality Control and Performance Evaluation Using Image Metrics

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018 (AISI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 845))

Abstract

This paper aims to two main goals, first goal is to achieve the characterization of quality control of ultrasound scanners based on the potential image metrics. On the other hand, the most effective goal is how to classify ultrasound scanners based on image metrics to evaluate performance of ultrasound transducer. The authors utilize the metrics to give information about the spatial arrangement of the gray levels in the specific interest region. The execution of ultrasound images metric based on a set of 19 metrics (i.e. contrast, gradient and Laplacian). This set reflects quality control of ultrasound scanners. The wok of this paper based on the best 6 metrics from 19 metrics which extracted from linear discriminative analysis (LDA). The classification methods used for minimum numbers of metrics are fused using support vector machine (SVM) and the highest classification method is back propagation neural network (BPNN) classifiers to get the main target of paper. Finally, the results show that objective performance evaluation of ultrasound transducer accuracy was 100% by using back propagation neural network classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall, T.J., Insana, M.F., Harrison, L.A., et al.: Ultrasound contrast detail analysis: a comparison of low contrast detectability among scanhead designs. J. Med. Phys. 22, 1117–1125 (1995)

    Article  Google Scholar 

  2. Hoskins, P., Martin, K., Thrush, A.: Diagnostic Ultrasound: Physics and Equipment, p. 147. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Zdero, R., Fenton, P.V., Bryant, J.T.: A digital image analysis method for diagnostic ultrasound calibration. Ultrasonics 39, 695–702 (2002)

    Article  Google Scholar 

  4. Lopez, H., Loew, M.H., Goodenough, D.J.: Objective analysis of ultrasound images by use of a computational observer. IEEE Trans. Med. Imaging 11, 496–506 (1992)

    Article  Google Scholar 

  5. Rownd, J.J., Madsen, E.L., Zagzebski, J.A., et al.: Phantoms and automated system for testing the resolution of ultrasound scanners. J. Ultrasound Med. Biol. 23, 245–260 (1997)

    Article  Google Scholar 

  6. Kofler, J.M., Madsen, E.L.: Improved method for determining resolution zones in ultrasound phantoms with spherical simulated lesions. Ultrasound Med. Biol. 27, 1667–1676 (2001)

    Article  Google Scholar 

  7. Kofler, J.M., Lindstrom, M.J., Kelcz, F., et al.: Association of automated and human observer lesion detecting ability using phantoms. J. Ultrasound Med. Biol. 31, 351–359 (2005)

    Article  Google Scholar 

  8. Thijssen, J.M., Weijers, G., De Korte, C.L.: Objective performance testing and quality assurance of medical ultrasound equipment. J. Ultrasound Med. Biol. 33, 460–471 (2007)

    Article  Google Scholar 

  9. Rosenfeld, E., Wolter, S., Kopp, A., et al.: Investigation of the suitability of tissue phantoms for testing the constancy of ultrasonic transducer arrays in quality assurance. Ultraschall Med. 33, 289–294 (2012)

    Article  Google Scholar 

  10. Rosenfeld, E., Jenderka, K.V., Kopp, A., et al.: How perfect are you with defective probes? Information on the results of the mini-trial on technical quality assurance during the “Ultraschall 2012” conference in Davos. Ultraschall Med. 34, 185–188 (2013)

    Article  Google Scholar 

  11. Weigang, B., Moore, G.W., Gessert, J., et al.: The method and effects of transducer degradation on image quality and the clinical efficacy of diagnostic sonography. J. Diagn. Med. Sonogr. 19, 3–13 (2003)

    Article  Google Scholar 

  12. Cozzolino, P., Stramare, R., Udilano, A., et al.: Quality control of ultrasound transducers: analysis of evaluation parameters and results of a survey of 116 transducers in a single hospital. Radiol. Med. (Torino) 115, 668–677 (2010)

    Article  Google Scholar 

  13. Hangiandreou, N.J., Stekel, S.F., Tradup, D.J., et al.: Four-year experience with a clinical ultrasound quality control program. Ultrasound Med. Biol. 37, 1350–1357 (2011)

    Article  Google Scholar 

  14. Wolter, S., Kopp, A., Liebscher, E., et al.: Consistency check of diagnostic ultrasound transducer arrays using tissue equivalent Phantoms. AIP Conf. Proc. 1433, 644–647 (2012)

    Article  Google Scholar 

  15. Filho, A.C., Rodrigues, E.P., Junior, J.E., et al.: A computational tool as support in B-mode ultrasound diagnostic quality control, Master dissertation. Braz. J. Biomed. Eng. 30, 402–405 (2014)

    Google Scholar 

  16. Gonzalez, R.C.: Digital Image Processing, pp. 125–128. Prentice Hall, Prentice (2002)

    Google Scholar 

  17. Satonkar, S.S., Kurhe, A.B., Khanale, P.B.: Face recognition using principal component analysis and linear discriminant analysis on holistic approach in facial images database. J. Eng. 2, 15–23 (2012)

    Google Scholar 

  18. Singh, M., Singh, S., Gupta, S.: An information fusion-based method for liver classification using image metrics of ultrasound images. Inf. Fusion 19, 91–96 (2014)

    Article  Google Scholar 

  19. Jaffe, C.C., Harris, D.J., Taylor, K.J.W., Viscomi, G., Mannes, E.: Sonographic transducer performance cannot be evaluated with clinical images. Am. J. Roentgenol. 137, 1239–1243 (1981)

    Article  Google Scholar 

  20. Lualdi, M., Gamberale, L., Pignoli, E.: A novel computerized method for quality assurance of medical ultrasound probes. Phys. Med. 32, 81 (2016)

    Google Scholar 

  21. Montani, L., Paoli, M., Camarda, M., et al.: Implementation of a quality assurance program for ultrasound transducers. Phys. Med. 32, 136 (2016)

    Article  Google Scholar 

  22. Goodsitt, M.M., Carson, P.L., Witt, S., et al.: Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1. J Med. Phys. 25, 1385–1406 (1998)

    Article  Google Scholar 

  23. Kalyan, K., Lele, R.D., Jakhia, B., et al.: Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Adv. Bioinform. 2014, 1–14 (2014)

    Article  Google Scholar 

  24. Price, J.H., Gough, D.A.: Comparison of phase-contrast and fluorescence digital autofocus for scanning microscopy. J. Cytom. 16, 283–297 (1994)

    Article  Google Scholar 

  25. Mabrouk, M., Karrar, A., Sharawy, A.: Computer aided detection of large lung nodules using chest computer tomography image. Int. J. Appl. Inf. Syst. 3, 12–18 (2012)

    Google Scholar 

  26. Gonzalez, R.C.: Digital Image Processing Using Matlab, pp. 601–607. Mc Graw Hill Education, London (2009)

    Google Scholar 

  27. Abduh, Z., Abdel Wahed, M.A., Kadah, Y.M.: Robust computer-aided detection of pulmonary nodules from chest computed tomography. J. Med. Imaging Health Inf. 6, 1–7 (2016)

    Article  Google Scholar 

  28. Javed, U., Riaz, M.M., Cheema, T.A.: MRI brain classification using texture features, fuzzy weighting and support vector machine. J. Progr. Electromagn. Res. B 53, 73–88 (2013)

    Article  Google Scholar 

  29. McGee, K.P., Manduca, A., Felmlee, J.P., et al.: Image metric-based correction (autocorrection) of motion effects: analysis of image metrics. J. Magn. Resonan. Imaging 11, 174–181 (2000)

    Article  Google Scholar 

  30. Vollath, D.: The influence of the scene parameters and of noise on the behavior of automatic focusing algorithms. J. Microsc. 151, 133–146 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr A. Sharawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharawy, A.A., Mohammed, K.K., Aouf, M., Salem, M.AM. (2019). Ultrasound Transducer Quality Control and Performance Evaluation Using Image Metrics. In: Hassanien, A., Tolba, M., Shaalan, K., Azar, A. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. AISI 2018. Advances in Intelligent Systems and Computing, vol 845. Springer, Cham. https://doi.org/10.1007/978-3-319-99010-1_3

Download citation

Publish with us

Policies and ethics