HoloEasy, A Web Application for Computer Generated Holograms

  • Alberto Patiño-VanegasEmail author
  • Lenier Leonis Diaz-Pacheco
  • John Jairo Patiño-Vanegas
  • Juan Carlos Martínez-Santos
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 885)


If the appropriate phase and/or amplitude profile is placed on a Diffractive Optical Element (DOE) it can practically generate an image of an object (hologram) by diffraction of the light. The problem of generating computer holograms consists of calculating numerically the profile of phase and/or amplitude with which the DOE should be built. Computer Generated Holograms (CGH) can be used to construct general-purpose optical elements in the sense that they serve to transform a spatial distribution of light into any other. In this way, they are used in optical communication systems, laser machining, laser welding, optical readers, human vision, data storage and visualization, image processing, among others. Unlike the optical techniques for generating holograms, in the CGH both the desired image and the phase and/or amplitude distribution are calculated numerically. In this work, a web environment application has been developed to calculate the phase changes that a coherent beam of light must undergo when incident on a DOE, so that it is transformed by Fraunhofer diffraction, in the hologram of an object. We use an algorithm with iterative Fourier transformations (IFTA) that uses regulation and stabilization parameters can be chosen by the user. In addition, the user has the freedom to choose holograms for optical applications (free of speckles) generating initial diffusers of a limited band and without phase singularities.


Web application Computer Generated Hologram Diffuser IFTA Speckles 


  1. 1.
    Herzig, H.P.: Micro-optics: Elements, Systems and Applications. Taylor and Francis, London (1998)Google Scholar
  2. 2.
    Wyrowski, F.: Diffractive optical elements: iterative calculation of quantized, blazed structures. J. Opt. Soc. Am. 7, 961–963 (1990)CrossRefGoogle Scholar
  3. 3.
    Pellat-Finet, P.: Optique de Fourier, théorie métaxiale et fractionnaire. Springer, Paris (2009)CrossRefGoogle Scholar
  4. 4.
    Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–346 (1972)Google Scholar
  5. 5.
    Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978)CrossRefGoogle Scholar
  6. 6.
    Youla, D.C.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits Syst. 25, 694–702 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gerchberg, R.W.: Super resolution through error energy reduction. Opt. Acta. 21, 709–720 (1974)CrossRefGoogle Scholar
  8. 8.
    Papoulis, A.: A new algorithm in spectral analysis an band-limited extrapolation. IEEE Trans. Circuits Syst. 22, 735–742 (1975)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fienup, J.R.: Phase retrieval algorithm for a complicated optical system. Appl. Opt. 32, 1737–1746 (1993)CrossRefGoogle Scholar
  10. 10.
    Wyrowski, F., Bryngdahl, O.: Iterative Fourier-transform algorithm applied to computer holography. J. Opt. Soc. A. 5, 1058–1064 (1988)CrossRefGoogle Scholar
  11. 11.
    Aagedal, H., Schmid, M., Beth, T., Teiwes, S., Wyrowski, F., Chaussee, R.: Theory of speckles in diffractive optics and its application to beam shaping. J. Mod. Opt. 43, 1409–1421 (1996)CrossRefGoogle Scholar
  12. 12.
    Bräuer, R., Wyrowski, F., Bryngdahl, O.: Diffuser in digital holography. J. Opt. Am. 8, 572–578 (1991)CrossRefGoogle Scholar
  13. 13.
    Chhetri, B., Serikawa, S., Shimomura, T.: Heuristic algorithm for calculation of sufficiently randomized object-independent diffuser for holography. SPIE 4113, 205–216 (2000)Google Scholar
  14. 14.
    Kim, H., Lee, B.: Iterative Fourier transform algorithm with adaptative regularization parameter distribution for optimal design of diffractive optical elements. Jpn. J. Appl. Phys. 43, 702–05 (2004)CrossRefGoogle Scholar
  15. 15.
    Tikhonov, A., Goncharsky, V., Stepanov, V., Yagola, A.: Numerical Methods for the Solution of Ill-posed Problems. Kluwer Academic, Boston (1995)CrossRefGoogle Scholar
  16. 16.
    Kotlyar, V., Seraphimovich, P., Soifer, V.: An iterative algorithm for designing diffractive optical elements with regularization. Opt. Lasers Eng. 29, 261–68 (1998)CrossRefGoogle Scholar
  17. 17.
    Kim, H., Yang, B., Lee, B.: Iterative Fourier transform algorithm with regularization for optimal design of diffractive optical elements. J. Opt. Soc. Am. A. 21, 2353–2365 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad Tecnológica de BolívarCartagena de IndiasColombia
  2. 2.Universidad Popular del CesarValleduparColombia

Personalised recommendations