Skip to main content

Optimized Artificial Neural Network System to Select an Exploration Algorithm for Robots on Bi-dimensional Grids

  • Conference paper
  • First Online:
  • 1079 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 885))

Abstract

This article shows how Machine learning techniques are tested to predict the performance of different exploration algorithms: Random Walk, Random Walk WSB and Q Learning, for robots moving on a bi-dimensional grid. The overall objective is to create a tool to help select the best performing exploration algorithm according to a configurable testing scenario, without the need to perform new experiments, either physical or simulated. The work presented here focuses on optimizing the topology of an Artificial Neural Network (ANN) to improve prediction results versus a previously proposed approach. The Hill Climbing algorithm is tested as optimization method, compared with manual trial and error optimization. The ANN was selected because it has the best performance indicators in terms of Relative Absolute Error and Pearson Correlation Coefficient compared with Random Forest and Decision Trees. The metric used to measure the performance of the exploration algorithms is Maximum Number of Steps to target.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, Y., Gong, D., Zhang, J.: Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103, 172–185 (2013)

    Article  Google Scholar 

  2. Wu, H., Tian, G., Huang, B.: Multi-robot collaboration exploration based on immune network model. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2008, pp. 1207–1212 (2008)

    Google Scholar 

  3. Andreychuk, A., Bokovoy, A., Yakovlev, K.: An empirical evaluation of grid-based path planning algorithms on widely used in robotics raspberry pi platform. In: The 2018 International Conference on Artificial Life and Robotics (ICAROB 2018), pp. 1–4 (2018)

    Google Scholar 

  4. Akutsu, T., Yaoi, S., Sato, K., Enomoto, S.: Development and comparison of search algorithms for robot motion planning in the configuration space. In: Proceedings IROS 1991: IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, pp. 429–434 (1991)

    Google Scholar 

  5. Faigl, J., Simonin, O., Charpillet, F.: Comparison of task-allocation algorithms in frontier-based multi-robot exploration. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 101–110. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17130-2_7

    Chapter  Google Scholar 

  6. Kulich, M., Juchelka, T., Přeučil, L.: Comparison of exploration strategies for multi-robot search. Acta Polytech. 55(3), 162 (2015)

    Article  Google Scholar 

  7. Holz, F., Behnke, S., Basilico, N., Amigoni, F.: Evaluating the efficiency of frontier-based exploration strategies. In: ISR/Robotik 2010, vol. 1, no. June, p. 8 (2010)

    Google Scholar 

  8. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Auton. Robots 33(4), 427–444 (2012)

    Article  Google Scholar 

  9. Amigoni, F.: Experimental evaluation of some exploration strategies for mobile robots. In: IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  10. Martínez Puerta, J.J., Vallejo Jiménez, M.M.: Comparación de estrategias de navegación colaborativa para robótica móvil. Universidad Autónoma de Manizales (2016)

    Google Scholar 

  11. Caballero, L., Benavides, C., Percybrooks, W.: Machine learning-based system to estimate the performance of exploration algorithms for robots in a bi-dimensional grid. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), pp. 1–6 (2018)

    Google Scholar 

  12. Pitarque, A., Ruiz, J.C., Roy, J.F.: Las redes neuronales como herramientas estadísticas no paramétricas de clasificación. Psicothema 12(SUPPL. 2), 459–463 (2000)

    Google Scholar 

  13. Tabachnick, B., Fidell, L.: Using Multivariate Statistics. Harper & Row, New York (1996)

    Google Scholar 

  14. Cohen, J., Cohen, P.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 545 p. Taylor & Francis, Milton Park (1983)

    Google Scholar 

  15. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, 8th edn. Springer, New York (2017). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  16. Lau, B., Sprunk, C., Burgard, W.: Efficient grid-based spatial representations for robot navigation in dynamic environments. Rob. Auton. Syst. 61(10), 1116–1130 (2013)

    Article  Google Scholar 

  17. Flach, P.: Data, Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  18. machine learning - How to interpret error measures? - Cross Validated (2017). https://stats.stackexchange.com/questions/131267/how-to-interpret-error-measures. Accessed 28 Feb 2018

  19. Cross-Validation - MATLAB & Simulink (2018). https://la.mathworks.com/discovery/cross-validation.html. Accessed 20 Apr 2018

  20. Izquierdo, S.K., Rodó, D.M., Bakx, G.E., Iglésias, R.B.: Inteligencia artificial avanzada. Editorial UOC - Editorial de la Universitat Oberta de Catalunya (2013)

    Google Scholar 

  21. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liesle Caballero , Mario Jojoa or Winston Percybrooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caballero, L., Jojoa, M., Percybrooks, W. (2018). Optimized Artificial Neural Network System to Select an Exploration Algorithm for Robots on Bi-dimensional Grids. In: Serrano C., J., Martínez-Santos, J. (eds) Advances in Computing. CCC 2018. Communications in Computer and Information Science, vol 885. Springer, Cham. https://doi.org/10.1007/978-3-319-98998-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98998-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98997-6

  • Online ISBN: 978-3-319-98998-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics