Abstract
Colombia is a country with a huge agricultural potential, thanks to its size and geography diversity. Unfortunately, it is far from using it efficiently: 65% of its farmland is either unused or underused due to political problems. Furthermore, vast of Colombian agriculture is characterized - when compared with other countries - by low levels of productivity, due to the lack of good farming practices and technologies.
The new political framework created by the recently signed peace agreement in this country opens new opportunities to increase its agricultural vocation. However, a lot of work is still required in this country to improve the synergy between academia, industry, agricultural experts, and farmers towards improving productivity in this field.
Advances in smart-farming technologies such as Remote Sensing (RS), Internet of Things (IoT), Big Data/Data Analytics and Geographic Information Systems (GIS), bring a great opportunity to contribute to such synergy. These technologies allow not only to collect and analyze data directly from the crops in real time, but to extract new knowledge from it. Furthermore, this new knowledge, combined with the knowledge of local experts, could become the core of future technical assistance and decision support systems tools for countries with a great variety of soils and tropical floors such as Colombia.
Motivated by these issues, this paper proposes an extension to Thingsboard, a popular open-source IoT platform. This extended version aims to be the core of a cloud-based Smart Farming platform that will concentrate sensors, a decision support system, and a configuration of remotely controlled and autonomous devices (e.g. water dispensers, rovers or drones). The architecture of the platform is described in detail and then showcased in a scenario with simulated sensors. In such scenario early warnings of an important plant pathogen in Colombia are generated by data analytics, and actions on third-party devices are dispatched in consequence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, E., et al.: The role of big data analytics in internet of things. Comput. Netw. 129, 459–471 (2017)
Alvarez Villada, D.M., Estrada Iza, M., Cock, J.H.: Rasta rapid soil and terrain assessment: Guía práctica para la caracterización del suelo y del terreno (2010)
Bashir, M.R., Gill, A.Q.: Towards an IoT big data analytics framework: smart buildings systems. In: 2016 IEEE 18th International Conference on IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 1325–1332. IEEE (2016)
Bonér, J., Klang, V., Kuhn, R., et al.: Akka library. http://akka.io/
Bruinsma, J.: World Agriculture: Towards 2015/2030: An FAO Study. Routledge, London (2017)
Cadavid, H., Pérez, A., Rocha, C.: Reliable control architecture with PLEXIL and ROS for autonomous wheeled robots. In: Solano, A., Ordoñez, H. (eds.) CCC 2017. CCIS, vol. 735, pp. 611–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66562-7_44
Espana, V.A.A., Pinilla, A.R.R., Bardos, P., Naidu, R.: Contaminated land in colombia: a critical review of current status and future approach for the management of contaminated sites. Sci. Total Environ. 618, 199–209 (2018)
Fry, W., et al.: Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 105(7), 966–981 (2015)
Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, pp. 235–245. Morgan Kaufmann Publishers Inc. (1973)
Iglesias, I., Escuredo, O., Seijo, C., Méndez, J.: Phytophthora infestans prediction for a potato crop. Am. J. Potato Res. 87(1), 32–40 (2010)
Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M., Ismail, M.: Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors 17(8), 1781 (2017)
Poole, J., Rae, B., González, L., Hsu, Y., Rutherford, I.: A world that counts: mobilising the data revolution for sustainable development. Technical report, Independent Expert Advisory Group on a Data Revolution for Sustainable Development, November 2014
Lasso, E., Corrales, J.C.: Towards an alert system for coffee diseases and pests in a smart farming approach based on semi-supervised learning and graph similarity. In: Angelov, P., Iglesias, J.A., Corrales, J.C. (eds.) AACC’17 2017. AISC, vol. 687, pp. 111–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70187-5_9
Lasso, E., Valencia, O., Corrales, D.C., López, I.D., Figueroa, A., Corrales, J.C.: A cloud-based platform for decision making support in Colombian agriculture: a study case in coffee rust. In: Angelov, P., Iglesias, J.A., Corrales, J.C. (eds.) AACC’17 2017. AISC, vol. 687, pp. 182–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70187-5_14
Nuthall, P.: Farm Business Management: Analysis of Farming Systems. Lincoln University, CABI (2011)
International Federation of Organic Agriculture Movements (IFOAM): Best Practice Guideline for Agriculture and Value Chains. Sustainable Organic Agriculture Action Network/International Federation of Organic Agriculture Movements (IFOAM) (2013)
Peisker, A., Dalai, S.: Data analytics for rural development. Indian J. Sci. Technol. 8(S4), 50–60 (2015)
Sarangi, S., Umadikar, J., Kar, S.: Automation of agriculture support systems using wisekar: case study of a crop-disease advisory service. Comput. Electron. Agric. 122, 200–210 (2016)
ThingsBoard. Thingsboard - open-source IoT platform (2018). https://thingsboard.io
Vasisht, D., et al.: Farmbeats: an IoT platform for data-driven agriculture. In: NSDI, pp. 515–529 (2017)
Beulens, A.J., Reijers, H.A., van der Vorst, J.G., Verdouw, C.N.: A control model for object virtualization in supply chain management. Comput. Ind. 68, 116–131 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Cadavid, H., Garzón, W., Pérez, A., López, G., Mendivelso, C., Ramírez, C. (2018). Towards a Smart Farming Platform: From IoT-Based Crop Sensing to Data Analytics. In: Serrano C., J., Martínez-Santos, J. (eds) Advances in Computing. CCC 2018. Communications in Computer and Information Science, vol 885. Springer, Cham. https://doi.org/10.1007/978-3-319-98998-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-98998-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98997-6
Online ISBN: 978-3-319-98998-3
eBook Packages: Computer ScienceComputer Science (R0)