Advertisement

Physiological Signals Fusion Oriented to Diagnosis - A Review

  • Y. F. Uribe
  • K. C. Alvarez-Uribe
  • D. H. Peluffo-Ordoñez
  • M. A. Becerra
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 885)

Abstract

The analysis of physiological signals is widely used for the development of diagnosis support tools in medicine, and it is currently an open research field. The use of multiple signals or physiological measures as a whole has been carried out using data fusion techniques commonly known as multimodal fusion, which has demonstrated its ability to improve the accuracy of diagnostic care systems. This paper presents a review of state of the art, putting in relief the main techniques, challenges, gaps, advantages, disadvantages, and practical considerations of data fusion applied to the analysis of physiological signals oriented to diagnosis decision support. Also, physiological signals data fusion architecture oriented to diagnosis is proposed.

Keywords

Data fusion Multimodal fusion Diagnostic decision support Signal processing Physiological signal 

References

  1. 1.
    Clifford, G.D., Long, W.J., Moody, G.B., Szolovits, P.: Robust parameter extraction for decision support using multimodal intensive care data. Philos. Trans. A. Math. Phys. Eng. Sci. 367(1887), 411–429 (2009)CrossRefGoogle Scholar
  2. 2.
    Mollakazemi, M.J., Atyabi, S.A., Ghaffari, A.: Heart beat detection using a multimodal data coupling method. Physiol. Meas. 36(8), 1729–1742 (2015)CrossRefGoogle Scholar
  3. 3.
    Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012)CrossRefGoogle Scholar
  4. 4.
    Begum, S., Barua, S., Filla, R., Ahmed, M.U.: Classification of physiological signals for wheel loader operators using multi-scale entropy analysis and case-based reasoning. Expert Syst. Appl. 41(2), 295–305 (2014)CrossRefGoogle Scholar
  5. 5.
    Pantelopoulos, A., Bourbakis, N.: SPN-model based simulation of a wearable health monitoring system. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Engineering the Future of Biomedicine, EMBC 2009, pp. 320–323 (2009)Google Scholar
  6. 6.
    Ryoo, H.C., Sun, H.H., Hrebien, L.: Two compartment fusion system designed for physiological state monitoring. In: Annual Reports Res. React. Inst., pp. 2224–2227 (2001)Google Scholar
  7. 7.
    Li, Q., Mark, R.G., Clifford, G.D.: Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator. Biomed. Eng. Online 15, 1–15 (2009)Google Scholar
  8. 8.
    Galeotti, L., Scully, C.G., Vicente, J., Johannesen, L., Strauss, D.G.: Robust algorithm to locate heart beats from multiple physiological waveforms by individual signal detector voting. Physiol. Meas. 36(8), 1705–1716 (2015)CrossRefGoogle Scholar
  9. 9.
    Tsiliki, G., Kossida, S.: Fusion methodologies for biomedical data. J. Proteomics 74(12), 2774–2785 (2011)CrossRefGoogle Scholar
  10. 10.
    Setz, C., Schumm, J., Lorenz, C., Arnrich, B., Tröster, G.: Using ensemble classifier systems for handling missing data in emotion recognition from physiology: one step towards a practical system. In: Affective Computing and Intelligent Interaction (ACII 2009), pp. 1–8 (2009)Google Scholar
  11. 11.
    Castanedo, F.: A review of data fusion techniques. Sci. World J. 2013, 704504 (2013)CrossRefGoogle Scholar
  12. 12.
    Patil, R.: Digital signal preservation approaches of archived biomedical paper records - a review. In: 5th International Conference on Wireless Networks and Embedded Systems, WECON 2016, pp. 13–16 (2016)Google Scholar
  13. 13.
    Liu, T., Si, Y., Wen, D., Zang, M., Lang, L.: Dictionary learning for VQ feature extraction in ECG beats classification. Expert Syst. Appl. 53, 129–137 (2016)CrossRefGoogle Scholar
  14. 14.
    Alvarez-Estevez, D., Moret-Bonillo, V.: Spectral heart rate variability analysis using the heart timing signal for the screening of the sleep apnea–hypopnea syndrome. Comput. Biol. Med. 71, 14–23 (2016)CrossRefGoogle Scholar
  15. 15.
    Liu, Q., Chen, Y.F., Fan, S.Z., Abbod, M.F., Shieh, J.S.: A comparison of five different algorithms for EEG signal analysis in artifacts rejection for monitoring depth of anesthesia. Biomed. Sig. Process. Control 25, 24–34 (2016)CrossRefGoogle Scholar
  16. 16.
    Mack, D.J., Schönle, P.: An EOG-based, head-mounted eye tracker with 1 kHz sampling rate. In: IEEE Biomedical Circuits and Systems Conference: Engineering for Healthy Minds and Able Bodies, BioCAS, pp. 7–10 (2015)Google Scholar
  17. 17.
    Khan, M., et al.: Analysing the effects of cold, normal, and warm digits on transmittance pulse oximetry. Biomed. Sig. Process. Control 26, 34–41 (2016)CrossRefGoogle Scholar
  18. 18.
    Janik, P., Janik, M.A., Wróbel, Z.: Integrated micro power frequency breath detector. Sens. Actuators A Phys. 239, 79–89 (2016)CrossRefGoogle Scholar
  19. 19.
    Essentials, F., Taylor, A.J.: Learning Cardiac Auscultation. Springer, London (2015).  https://doi.org/10.1007/978-1-4471-6738-9CrossRefGoogle Scholar
  20. 20.
    Francisco, J., et al.: Changes in the severity of aortic regurgitation at peak effort during exercise ☆. Int. J. Cardiol. 228, 145–148 (2017)CrossRefGoogle Scholar
  21. 21.
    Chuiko, G.P., Dvornik, O.V., Shyian, S.I., Baganov, Y.A.: A new age-related model for blood stroke volume. Comput. Biol. Med. 79(Oct), 144–148 (2016)CrossRefGoogle Scholar
  22. 22.
    Lorenzi, P., Rao, R., Romano, G., Kita, A., Irrera, F.: Mobile devices for the real-time detection of specific human motion disorders. IEEE Sens. J. 16(23), 8220–8227 (2016)Google Scholar
  23. 23.
    Takaura, K., Tsuchiya, N., Fujii, N.: Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: differences between high- and low-frequency activity. NeuroImage 124, 557–572 (2016)CrossRefGoogle Scholar
  24. 24.
    Antelis, J.M., Gudi, B., Eduardo, L., Sanchez-ante, G., Sossa, H.: Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed. Sig. Process. Control 44, 12–24 (2018)CrossRefGoogle Scholar
  25. 25.
    Becerra, M.A., Alvarez-Uribe, K.C., Peluffo-Ordoñez, D.H.: Low data fusion framework oriented to information quality for BCI systems. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 289–300. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78759-6_27CrossRefGoogle Scholar
  26. 26.
    Kaur, H., Rajni, R.: On the detection of cardiac arrhythmia with principal. Wirel. Pers. Commun. 97(4), 5495–5509 (2017)CrossRefGoogle Scholar
  27. 27.
    Rajesh, K.N.V.P.S., Dhuli, R.: Biomedical signal processing and control classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed. Sig. Process. Control 41, 242–254 (2018)CrossRefGoogle Scholar
  28. 28.
    Mulam, H.: Optimized feature mapping for eye movement recognition using electrooculogram signals. In: 8th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2017 (2017)Google Scholar
  29. 29.
    Lv, Z., Zhang, C., Zhou, B., Gao, X., Wu, X.: Design and implementation of an eye gesture perception system based on electrooculography. Expert Syst. Appl. 91, 310–321 (2018)CrossRefGoogle Scholar
  30. 30.
    Young, A.J., Kuiken, T.A., Hargrove, L.J.: Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J. Neural Eng. 11(5), 56021 (2014)CrossRefGoogle Scholar
  31. 31.
    Kaur, A., Agarwal, R., Kumar, A.: Adaptive threshold method for peak detection of surface electromyography signal from around shoulder muscles. J. Appl. Stat. 4763, 714–726 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Khurana, V., Kumar, P., Saini, R., Roy, P.P.: ScienceDirect EEG based word familiarity using features and frequency bands combination Action editor: Ning Zhong. Cogn. Syst. Res. 49, 33–48 (2018)CrossRefGoogle Scholar
  33. 33.
    Koelstra, S.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)CrossRefGoogle Scholar
  34. 34.
    Degenhart, A.D., Hiremath, S.V., Yang, Y.: Remapping cortical modulation for electrocorticographic brain–computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis. J. Neural Eng. 15(2), 026021 (2018)CrossRefGoogle Scholar
  35. 35.
    Ravan, M.: Beamspace fast fully adaptive brain source localization for limited data sequences. Inverse Probl. 33(5), 055021 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Alonso-ar, M.A., Ibarra-hern, R.F., Cruz-guti, A., Licona-ch, A.L., Villarreal-reyes, S.: Design and evaluation of a parametric model for cardiac sounds. Comput. Biol. Med. 89(Aug), 170–180 (2017)Google Scholar
  37. 37.
    Babu, K.A., Ramkumar, B., Manikandan, M.S.: Real-time detection of S2 sound using simultaneous recording of PCG and PPG. In: IEEE Region 10 Annual International Conference, pp. 1475–1480 (2017)Google Scholar
  38. 38.
    Prabha, A., Trivedi, A., Kumar, A.A., Kumar, C.S.: Automated system for obstructive sleep apnea detection using heart rate variability and respiratory rate variability. In: International Conference on Advances in Computing, pp. 1303–1307 (2017)Google Scholar
  39. 39.
    Lee, H., Chung, H., Ko, H., Lee, J.: Wearable multichannel photoplethysmography framework for heart rate monitoring during intensive exercise. IEEE Sens. J. 18(7), 2983–2993 (2018)CrossRefGoogle Scholar
  40. 40.
    Oliveira, C.C., Machado Da Silva, J.: A fuzzy logic approach for highly dependable medical wearable systems. In: Proceedings of the 2015 IEEE 20th International Mixed-Signal Testing Workshop, IMSTW 2015 (2015)Google Scholar
  41. 41.
    Li, J., et al.: Design of a continuous blood pressure measurement system based on pulse wave and ECG signals. IEEE J. Transl. Eng. Heal. Med. 6(Jan), 1–14 (2018)Google Scholar
  42. 42.
    Conte, R., Longo, M., Marano, S., Matta, V., Elettrica, I., Dea, A.: Fusing evidences from intracranial pressure data using dempster-shafer theory. In: 15th International Conference on Digital Signal Processing, pp. 159–162 (2007)Google Scholar
  43. 43.
    Al-Saud, K., Mahmuddin, M., Mohamed, A.: Wireless body area sensor networks signal processing and communication framework: survey on sensing, communication technologies, delivery and feedback. J. Comput. Sci. 8(1), 121–132 (2012)CrossRefGoogle Scholar
  44. 44.
    Torniainen, J., Cowley, B., Henelius, A., Lukander, K., Pakarinen, S.: Feasibility of an electrodermal activity ring prototype as a research tool. In: IEEE Engineering in Medicine and Biology Society, EMBS, pp. 6433–6436 (2015)Google Scholar
  45. 45.
    Muller, J., et al.: Repeatability of measurements of galvanic skin response – a pilot study. Open Complement. Med. J. 5(1), 11–17 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wang, Y.-Z., et al.: Nonenzymatic electrochemiluminescence glucose sensor based on quenching effect on luminol using attapulgite–TiO2. Sens. Actuators B Chem. 230, 449–455 (2016)CrossRefGoogle Scholar
  47. 47.
    Belgacem, N., Fournier, R., Nait-Ali, A., Bereksi-Reguig, F.: A novel biometric authentication approach using ECG and EMG signals. J. Med. Eng. Technol. 39(4), 226–238 (2015)CrossRefGoogle Scholar
  48. 48.
    Kume, D., Akahoshi, S., Yamagata, T., Wakimoto, T., Nagao, N.: Does voluntary hypoventilation during exercise impact EMG activity? SpringerPlus 5(1), 149 (2016)CrossRefGoogle Scholar
  49. 49.
    Stuart, S., Galna, B., Lord, S., Rochester, L.: A protocol to examine vision and gait in Parkinson’s disease: impact of cognition and response to visual cues [version 2; referees: 2 approved] Referee Status, pp. 1–18 (2016)Google Scholar
  50. 50.
    Abdat, F., Maaoui, C., Pruski, A.: Bimodal system for emotion recognition from facial expressions and physiological signals using feature-level fusion. In: Symposium on Computer Modeling and Simulation, pp. 24–29 (2011)Google Scholar
  51. 51.
    Zapata, J.C., Duque, C.M., Rojas-Idarraga, Y., Gonzalez, M.E., Guzmán, J.A., Becerra Botero, M.A.: Data fusion applied to biometric identification – a review. In: Solano, A., Ordoñez, H. (eds.) CCC 2017. CCIS, vol. 735, pp. 721–733. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66562-7_51CrossRefGoogle Scholar
  52. 52.
    Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102(P1), 162–172 (2014)CrossRefGoogle Scholar
  53. 53.
    Soria-Frisch, A., Riera, A., Dunne, S.: Fusion operators for multi-modal biometric authentication based on physiological signals. In: IEEE International Conference on Fuzzy Syst, FUZZ 2010, pp. 18–23 (2010)Google Scholar
  54. 54.
    Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state of the art. Inf. Fusion 14(1), 28–44 (2013)CrossRefGoogle Scholar
  55. 55.
    Jeon, T., Yu, J., Pedrycz, W., Jeon, M., Lee, B., Lee, B.: Robust detection of heartbeats using association models from blood pressure and EEG signals. Biomed. Eng. Online 15, 1–14 (2016)CrossRefGoogle Scholar
  56. 56.
    Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)CrossRefGoogle Scholar
  57. 57.
    Van Gerven, M.A.J., Taal, B.G., Lucas, P.J.F.: Dynamic Bayesian networks as prognostic models for clinical patient management. J. Biomed. Inform. 41, 515–529 (2008)CrossRefGoogle Scholar
  58. 58.
    Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G.: Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68–80 (2017)CrossRefGoogle Scholar
  59. 59.
    Ringeval, F., et al.: Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data. Pattern Recognit. Lett. 66, 22–30 (2015)CrossRefGoogle Scholar
  60. 60.
    Alemzadeh, H., Saleheen, M.U., Jin, Z., Kalbarczyk, Z., Iyer, R.K.: RMED: a reconfigurable architecture for embedded medical monitoring. In: 2011 IEEE/NIH Life Science Systems and Applications Workshop, pp. 112–115 (2011)Google Scholar
  61. 61.
    Magalhães, J., Rüger, S.: Information theoretic semantic multimedia indexing. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 619–626 (2007)Google Scholar
  62. 62.
    Sivanathan, A., Lim, T., Louchart, S., Ritchie, J.: Temporal multimodal data synchronisation for the analysis of a game driving task using EEG. Entertain. Comput. 5(4), 323–334 (2014)CrossRefGoogle Scholar
  63. 63.
    Ruiz, M.D., Gómez-Romero, J., Molina-Solana, M., Ros, M., Martin-Bautista, M.J.: Information fusion from multiple databases using meta-association rules. Int. J. Approx. Reason. 80, 185–198 (2017)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Nemati, S., Malhotra, A., Clifford, G.D.: Data fusion for improved respiration rate estimation. EURASIP J. Adv. Sig. Process. 2010, 926305 (2010)CrossRefGoogle Scholar
  65. 65.
    Zong, C.Z.C., Chetouani, M.: Hilbert-Huang transform based physiological signals analysis for emotion recognition. In: 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 334–339 (2009)Google Scholar
  66. 66.
    Martínez, H., Yannakakis, G.: Mining multimodal sequential patterns: a case study on affect detection. In: International Conference on Multimodal, pp. 3–10 (2011)Google Scholar
  67. 67.
    Chen, J., Luo, N., Liu, Y., Liu, L., Zhang, K., Kolodziej, J.: A hybrid intelligence-aided approach to affect-sensitive e-learning. Computing 98(1–2), 215–233 (2016)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Chen, L., Zhao, Y., Zhang, J., Zou, J.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015)CrossRefGoogle Scholar
  69. 69.
    Su, H., Zheng, G.: A non-intrusive drowsiness related accident prediction model based on D-S evidence theory. In: 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE, pp. 570–573 (2007)Google Scholar
  70. 70.
    Cosoli, G., Casacanditella, L., Tomasini, E., Scalise, L.: Evaluation of heart rate variability by means of laser doppler vibrometry measurements. J. Phys. Conf. Ser. 658, 12002 (2015)CrossRefGoogle Scholar
  71. 71.
    Fatemian, S.Z., Agrafioti, F., Hatzinakos, D.: HeartID: cardiac biometric recognition. In: IEEE 4th International Conference Biometrics Theory, Applications and Systems, BTAS 2010, pp. 1–5 (2010)Google Scholar
  72. 72.
    Pantelopoulos, A., Saldivar, E., Roham, M.: A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 6919–6922 (2011)Google Scholar
  73. 73.
    Zreik, M., Ben-Tsvi, Y., Taub, A., Almog, R.O., Messer, H.: Detection of auditory stimulus onset in the pontine nucleus using a multichannel multi-unit activity electrode. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, vol. 2, no. 17, pp. 2708–2711 (2011)Google Scholar
  74. 74.
    Ueda, H., Miyawaki, M., Hiraoka, H.: High-normal blood pressure is associated with new-onset electrocardiographic left ventricular hypertrophy. J. Hum. Hypertens. 29(1), 9–13 (2015)CrossRefGoogle Scholar
  75. 75.
    Benoit, A., et al.: Multimodal focus attention and stress detection and feedback in an augmented driver simulator. Pers. Ubiquitous Comput. 13(1), 33–41 (2009)CrossRefGoogle Scholar
  76. 76.
    Ai, L., Wang, J., Wang, X.: Multi-features fusion diagnosis of tremor based on artificial neural network and D–S evidence theory. Sig. Process. 88, 2927–2935 (2008)CrossRefGoogle Scholar
  77. 77.
    Sukuvaara, T., Heikela, A.: Computerized patient monitoring. Acta Anaesthesiol. Scand. 37, 185–189 (1993)CrossRefGoogle Scholar
  78. 78.
    Liou, L.M., et al.: Functional connectivity between parietal cortex and the cardiac autonomic system in uremics. Kaohsiung J. Med. Sci. 30(3), 125–132 (2014)CrossRefGoogle Scholar
  79. 79.
    Almasri, M.M., Elleithy, K.M.: Data fusion models in WSNs: comparison and analysis. In: Proceedings of 2014 Zone 1 Conference of the American Society for Engineering Education -Engineering Education: Industry Involvement and Interdisciplinary Trends, ASEE Zone 1, no. 203 (2014)Google Scholar
  80. 80.
    Synnergren, J., Gamalielsson, J., Olsson, B.: Mapping of the JDL data fusion model to bioinformatics. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 1506–1511 (2007)Google Scholar
  81. 81.
    Uluda, K., Roebroeck, A.: General overview on the merits of multimodal neuroimaging data fusion. NeuroImage 102(P1), 3–10 (2014)CrossRefGoogle Scholar
  82. 82.
    Mohamed, S., Haggag, S., Nahavandi, S., Haggag, O.: Towards automated quality assessment measure for EEG signals. Neurocomputing 237, 281–290 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Y. F. Uribe
    • 1
  • K. C. Alvarez-Uribe
    • 1
  • D. H. Peluffo-Ordoñez
    • 2
  • M. A. Becerra
    • 1
  1. 1.Instituto Tecnológico MetropolitanoMedellínColombia
  2. 2.Yachay TechSan Miguel de Urcuquí CantonEcuador

Personalised recommendations