Advertisement

Algorithms and Software of the Four-Level Model of Planning and Decision Making

  • Michael Z. ZgurovskyEmail author
  • Alexander A. Pavlov
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 173)

Abstract

We give an interrelated description for all algorithms which implement a procedure of scheduling and operative planning on the basis of formal procedures and expert solutions. We have achieved this result sequentially solving the following problems: (1) we formalize the network representation of a technological process; develop a language which implements the dynamics of the process functioning, define a set of practical optimality criteria for the operational plan; (2) we obtain a formal representation of the technological process, adapt the general procedures of its two-level aggregation; (3) we substantiate the scheduling problem reduction to the approximating problem of the total weighted completion times minimization on a single machine with precedence relations between the tasks; (4) we formalize the procedure of the coordinated planning which defines the processing order of products (or product series) corresponding to a single basic criterion; (5) we formalize the process of an operational plan construction based on results of the coordinated planning; (6) we develop two algorithms for an operational plan adjustment; (7) we substantiate a procedure for a decision maker for the expert evaluation and adjustment both of a potential portfolio of orders and the due dates of the products (or product series) included in it, for the approval of the final operational plan on the basis of analysis of plans obtained by the formal methods. The last section describes an informational software system implementing the hierarchical model in a specific practical area: for solving the problems of scheduling and planning for small-series productions.

References

  1. 1.
    Zgurovsky, M.Z., Pavlov, A.A.: Prinyatie Resheniy v Setevyh Sistemah s Ogranichennymi Resursami (Пpинятиe peшeний в ceтeвыx cиcтeмax c oгpaничeнными pecypcaми; Decision Making in Network Systems with Limited Resources). Naukova Dumka, Kyiv (2010) (in Russian)Google Scholar
  2. 2.
    Pavlov, A.A., Misura, E.B., Melnikov, O.V., et al.: Informaciyna tehnologiya iyerarhichnogo planuvannya ta priyniattia rishen’ v organizaciyno-virobnychih sistemah (Iнфopмaцiйнa тexнoлoгiя iєpapxiчнoгo плaнyвaння тa пpийняття piшeнь в opгaнiзaцiйнo-виpoбничиx cиcтeмax; The system of hierarchical planning and decision making in organizational and production systems). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 52, 3–14 (2010) (in Ukrainian)Google Scholar
  3. 3.
    Zgurovsky, M.Z., Pavlov, A.A., Misura, E.B., et al.: Metodologiya postroeniya chetyrehurovnevoi modeli planirovaniya, prinyatiya resheniy i operativnogo planirovaniya v setevyh sistemah s ogranichennymi resursami (Meтoдoлoгия пocтpoeния чeтыpexypoвнeвoй мoдeли плaниpoвaния, пpинятия peшeний и oпepaтивнoгo плaниpoвaния в ceтeвыx cиcтeмax c oгpaничeнными pecypcaми; Implementation of the methodology of the four-level model of planning, decision-making and operational management in networked systems with limited resources). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 61, 60–84 (2014) (in Russian)Google Scholar
  4. 4.
    Pavlov, A.A., Misura, E.B., Melnikov, O.V., et al.: Algoritmizaciya tret’ego i chetvertogo urovnei chetyrehurovnevoi modeli kalendarnogo i operativnogo planirovaniya i prinyatiya resheniy v setevyh sistemah s ogranichennymi resursami (Aлгopитмизaция тpeтьeгo и чeтвepтoгo ypoвнeй чeтыpexypoвнeвoй мoдeли кaлeндapнoгo и oпepaтивнoгo плaниpoвaния и пpинятия peшeний в ceтeвыx cиcтeмax c oгpaничeнными pecypcaми; Algorithmization of the third and fourth levels of the four-level model of scheduling, operational planning, and decision making in network systems with limited resources). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 63, 72–92 (2015) (in Russian)Google Scholar
  5. 5.
    Pavlov, A.A., Lisetsky, T.N.: Ispol’zovanie modificirovannogo metoda analiza ierarhiy pri priniatii resheniy v ierarhicheskom planirovanii (Иcпoльзoвaниe мoдифициpoвaннoгo мeтoдa aнaлизa иepapxий пpи пpинятии peшeний в иepapxичecкoм плaниpoвaнии; Using modified analytic hierarchy process to make decisions in hierarchical planning). In: Paper Presented at the Ukrainian Scientific and Practical Conference on Information Control Systems and Technologies IUST-ODESA 2012, Papyrus Publishing House, Odesa, Sumy, 17–18 Oct 2012 (in Russian)Google Scholar
  6. 6.
    Pavlov, A.A., Lisetsky, T.N.: Nestacionarnyi metod analiza ierarhiy v zadachah ierarhicheskogo planirovaniya i prinyatiya resheniy (Hecтaциoнapный мeтoд aнaлизa иepapxий в зaдaчax иepapxичecкoгo плaниpoвaния и пpинятии peшeний; Nonstationary method of analysis of hierarchies in hierarchical planning and decision-making). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 54, 82–86 (2011) (in Russian)Google Scholar
  7. 7.
    Pavlov, A.A., Sperkach, M.O., Halus, E.A.: Suboptimal’nyi polinomial’nyi algoritm resheniya odnogo klassa mnogoetapnyh setevyh zadach kalendarnogo planirovaniya (Cyбoптимaльный пoлинoмиaльный aлгopитм peшeния oднoгo клacca мнoгoэтaпныx ceтeвыx зaдaч кaлeндapнoгo плaниpoвaния; Suboptimal polynomial algorithm for solving a multistage network scheduling problem of a single class). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 57, 51–55 (2012) (in Russian)Google Scholar
  8. 8.
    Pavlov, A.A., Shtankevich, A.S.: Matematicheskie modeli i metody v ierarhicheskih i setevyh sistemah podderzhki priniatiya resheniy (Maтeмaтичecкиe мoдeли и мeтoды в иepapxичecкиx и ceтeвыx cиcтeмax пoддepжки пpинятия peшeний; Mathematical models and methods in hierarchical and network decision support systems). Paper Presented at the Ukrainian Scientific and Practical Conference on Information Control Systems and Technologies IUST-ODESA 2012, Papirus publishing house, Odesa, Sumy, 17–18 Oct 2012 (in Russian)Google Scholar
  9. 9.
    Pavlov, A.A., Misura, E.B., Halus, E.A., et al.: Rezul’tiruyushchaya formalizaciya pervogo urovnya trehurovnevoi modeli operativnogo planirovaniya i priniatiya resheniy po kriteriyu minimizacii summarnogo operezheniya direktivnyh srokov (Peзyльтиpyющaя фopмaлизaция пepвoгo ypoвня тpexypoвнeвoй мoдeли oпepaтивнoгo плaниpoвaния и пpинятия peшeний пo кpитepию минимизaции cyммapнoгo oпepeжeния диpeктивныx cpoкoв; The resultant formalization of the first level of the three-level model of operational planning and decision making with the criterion of minimizing the total earliness in relation to the due dates). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 56, 56–57 (2012) (in Russian)Google Scholar
  10. 10.
    Pavlov A.A., Misura E.B., Melnikov O.V., et al.: Formal’noe opisanie trehurovnevoi modeli operativnogo planirovaniya sistem s setevym predstavleniem tehnologicheskih processov. Postanovka novyh zadach issledovaniya (Фopмaльнoe oпиcaниe тpexypoвнeвoй мoдeли oпepaтивнoгo плaниpoвaния cиcтeм c ceтeвым пpeдcтaвлeниeм тexнoлoгичecкиx пpoцeccoв. Пocтaнoвкa нoвыx зaдaч иccлeдoвaния; The formal description of the three-level operational planning model for the systems with a network-based technological process. The new research tasks formulation). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 55, 5–10 (2012) (in Russian)Google Scholar
  11. 11.
    Pavlov, A.A., Misura, E.B., Lisetsky, T.N., et al.: Chetyrehurovnevaya model’ plani-rovaniya, priniatiya resheniy i operativnogo upravleniya v setevyh sistemah s ogranichennymi resursami (Чeтыpexypoвнeвaя мoдeль плaниpoвaния, пpинятия peшeний и oпepaтивнoгo yпpaвлeния в ceтeвыx cиcтeмax c oгpaничeнными pecypcaми; The four-level model of planning, decision making and operational control in the network systems with limited resources). Visnyk NTUU KPI Inform. Oper. Comput. Sci. 58, 11–23 (2013) (in Russian)Google Scholar
  12. 12.
    Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley Pub. Co., Boston (1967)zbMATHGoogle Scholar
  13. 13.
    Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logistics Q. 3(1–2), 59–66 (1956).  https://doi.org/10.1002/nav.3800030106MathSciNetCrossRefGoogle Scholar
  14. 14.
    Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling problems. Oper. Res. 8(4), 487–503 (1960).  https://doi.org/10.1287/opre.8.4.487MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pavlov, A.A., Sperkach, M.O.: Vypolnenie zadaniy s obshchim direktivnym srokom parallel’nymi priborami po kriteriyam optimal’nosti: minimizaciya summarnogo operezheniya otnositel’no direktivnogo stroka i maksimizaciya momenta zapuska zadaniy na vypolnenie (Bыпoлнeниe зaдaний c oбщим диpeктивным cpoкoм пapaллeльными пpибopaми пo кpитepиям oптимaльнocти: минимизaция cyммapнoгo oпepeжeния oтнocитeльнo диpeктивнoгo cтpoкa и мaкcимизaция мoмeнтa зaпycкa зaдaний нa выпoлнeниe; Tasks execution with a common due date on parallel machines with optimality criteria: total earliness minimization regarding the due date and the tasks’ start time execution maximization) . Visnyk NTUU KPI Inform. Oper. Comput. Sci. 62, 89–92 (2015) (in Russian)Google Scholar
  16. 16.
    Pavlov, A.A., Zhdanova, E.G., Sperkach, M.O.: Zadacha skladannya rozkladu vikonannya zavdan’ paralel’nymi priladami z metoyu minimizacii maksimumu vidhilennia vid direktivnogo terminu momentiv zavershennya priladami usih zavdan’ (Зaдaчa cклaдaння poзклaдy викoнaння зaвдaнь пapaлeльними пpилaдaми з мeтoю мiнiмiзaцiї мaкcимyмy вiдxилeння вiд диpeктивнoгo тepмiнy мoмeнтiв зaвepшeння пpилaдaми ycix зaвдaнь; A scheduling problem for parallel machines to minimize the maximum deviation of the completion times of all tasks from the due date). Math. Comput. Model Ser. Tech. Sci. 10, 148–158 (2014) (in Ukrainian)Google Scholar
  17. 17.
    Pavlov, A.A., Khalus, E.A., Borysenko, I.V.: Planning automation in discrete systems with a given structure of technological processes. In: Hu, Z., Petoukhov, S., Dychka, I., He M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol. 754, pp. 177–185. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-91008-6_18Google Scholar
  18. 18.
    Pavlov, O.A., Misura, O.B., Melnikov, O.V., Lisetsky, T.M.: Sistema kalendarnogo ta operativnogo planuvannya i priyniattia rishen’ dlia pidpriemstv diskretnogo tipu (Cиcтeмa кaлeндapнoгo тa oпepaтивнoгo плaнyвaння i пpийняття piшeнь для пiдпpиємcтв диcкpeтнoгo типy; A system of scheduling, operational planning, and decision making for enterprises of discrete type). Paper Presented at the 19-th International Conference on System Analysis and Information Technology SAIT 2017, Institute for Applied System Analysis of National Technical University of Ukraine “KPI”, Kyiv, 22–25 May 2017Google Scholar
  19. 19.
    Zagidullin, R.R.: Planirovanie Mashinostroitel’nogo Proizvodstva (Плaниpoвaниe мaшинocтpoитeльнoгo пpoизвoдcтвa; Engineering Production Planning). TNT, Staryi Oskol (2015) (in Russian)Google Scholar
  20. 20.
    Zagidullin, R.R.: Upravlenie Mashinostroitel’nym Proizvodstvom s Pomosch’yu Sistem MES, APS, ERP (Упpaвлeниe мaшинocтpoитeльным пpoизвoдcтвoм c пoмoщью cиcтeм MES, APS, ERP; Engineering Production Management with the Help of MES, APS, ERP Systems). TNT, Staryi Oskol (2011) (in Russian)Google Scholar
  21. 21.
    Advanced Planning & Scheduling: Wikipedia Russian. https://ru.wikipedia.org/wiki/Advanced_Planning_&_Scheduling (2018). Accessed 02 Apr 2018 (in Russian)
  22. 22.
    Unified Modeling Language. http://uml.org (2018). Accessed 01 June 2018
  23. 23.
    Object Management Group. http://omg.org (2018). Accessed 01 June 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kyiv Polytechnic InstituteNational Technical University of UkraineKyivUkraine
  2. 2.Faculty of Informatics and Computer ScienceNational Technical University of UkraineKyivUkraine

Personalised recommendations