The Total Weighted Completion Time of Tasks Minimization with Precedence Relations on a Single Machine

  • Michael Z. ZgurovskyEmail author
  • Alexander A. Pavlov
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 173)


We consider the problem of constructing a schedule for a single machine that minimizes the total weighted completion time of tasks when the restrictions on their processing order are given by an arbitrary oriented acyclic graph. The problem is NP-hard in the strong sense. Efficient polynomial algorithms for its solving are known only for cases when the oriented acyclic graph is a tree or a series-parallel graph. We give a new efficient PSC-algorithm of its solving. It is based on our earlier theoretical and practical results and solves the problem with precedence relations specified by an oriented acyclic graph of the general form. The first polynomial component of the PSC-algorithm contains sixteen sufficient signs of optimality. One of them will be statistically significantly satisfied at each iteration of the algorithm when solving randomly generated problem instances. In case when the sufficient signs of optimality fail, the PSC-algorithm is an efficient approximation algorithm. If the sufficient signs of optimality are satisfied at each iteration then the algorithm becomes exact. We present the empirical properties of the PSC-algorithm on the basis of statistical studies.


  1. 1.
    Zgurovsky, M.Z., Pavlov, A.A.: Prinyatie Resheniy v Setevyh Sistemah s Ogranichennymi Resursami (Принятие решений в сетевых системах с ограниченными ресурсами; Decision Making in Network Systems with Limited Resources). Naukova dumka, Kyiv (2010) (in Russian)Google Scholar
  2. 2.
    Aksionova, L.A.: Novye polinomial’nye podklassy trudnoreshaemoi zadachi “Minimizaciya summarnogo vzveshennogo momenta” dlia mnozhestva odnogo prioriteta (Новые полиномиальные подклассы труднорешаемой задачи «Минимизация суммарного взвешенного момента» для множества одного приоритета; New polynomial subclasses of the intractable problem “Minimizing the total weighted completion time” for one priority set). Upravl. Sist. i Mash. 182, 21–28 (2002) (in Russian)Google Scholar
  3. 3.
    Pavlov, A.A. (ed.): Konstruktivnye Polinomialnye Algoritmy Resheniya Individualnyh Zadach iz Klassa NP (Конструктивные полиномиальные алгоритмы решения индивидуальных задач из класса NP; Constructive Polynomial Algorithms for Solving Individual Problems from the Class NP). Tehnika, Kyiv (1993) (in Russian)Google Scholar
  4. 4.
    Pavlov, A.A. (ed.): Osnovy Sistemnogo Analiza i Proektirovaniya ASU (Основы системного анализа и проектирования АСУ; Fundamentals of System Analysis and Design of Automated Control Systems). Vyshcha Shkola, Kyiv (1991) (in Russian)Google Scholar
  5. 5.
    Pavlov, A.A., Aksionova, L.A.: Novye usloviya polinomial’noi sostavlyayushchei PDS-algoritma zadachi “Minimizaciya summarnogo vzveshennogo momenta” (Новые условия полиномиальной составляющей ПДС-алгоритма задачи «Минимизация суммарного взвешенного момента»; New conditions for the polynomial component of PSC-algorithm for the problem “Minimization of the total weighted completion time”). Probl. Programmir. 2001(1), 69–75 (2001) (in Russian)Google Scholar
  6. 6.
    Pavlov, A.A., Pavlova, L.A.: Osnovy metodologii proektirovaniya PDS-algoritmov dlya trudnoreshaemyh kombinatornyh zadach (Основы методологии проектирования ПДС-алгоритмов для труднорешаемых комбинаторных задач; Fundamentals of PDC-algorithms design methodology for intractable combinatorial problems). Probl. Inform. i Upravl. 4, 135–141 (1995) (in Russian)Google Scholar
  7. 7.
    Sidney J.B.: Decomposition algorithm for single-machine sequencing with precedence relation and deferral costs. Oper. Res. 23, 283–298 (1975)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pavlov, A.A. (ed.): Sistemy avtomatizirovannogo planirovaniya i dispetchirovaniya gruppovyh proizvodstvennyh processov (Системы автоматизированного планирования и диспетчирования групповых производственных процессов; Automated planning and dispatching of group production processes). Tekhnika, Kyiv (1990)Google Scholar
  9. 9.
    Pavlov, A.A., Pavlova, L.A.: About one subclass of polynomially solvable problems from class “Sequencing jobs to minimize total weighted completion time subject to precedence constraints”. Vestn. Mezhdunar. Solomon. Univer. 1999(1), 109–116 (1999)Google Scholar
  10. 10.
    Zgurovsky, M.Z., Pavlov, O.A., Misura, E.B. PDS-algoritmy i trudnoreshaemye zadachi kombinatornoi optimizacii (ПДС-алгоритмы и труднорешаемые задачи комбинаторной оптимизации; PDC-algorithms and intractable combinatorial optimization problems). Syst. Res. and Inform. Technol. 2009(4), 14–31 (2009) (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kyiv Polytechnic InstituteNational Technical University of UkraineKyivUkraine
  2. 2.Faculty of Informatics and Computer ScienceNational Technical University of UkraineKyivUkraine

Personalised recommendations