• Michael Z. ZgurovskyEmail author
  • Alexander A. Pavlov
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 173)


We formulate the research problems which are a generalization of our earlier results in the field of intractable combinatorial optimization problems. On the basis of these problems, we have created a hierarchical model of planning and decision making for objects with a network representation of technological processes and limited resources (Chap.  9). We say that the problem is intractable if it is NP-hard (NP-hard in the strong sense) or such for which an exact polynomial time solution algorithm has not been yet obtained. To solve such problems efficiently, we developed a methodology of PSC-algorithms construction meaning the algorithms which necessarily include the following: sufficient conditions (signs) of a feasible solution optimality, verification of which can be implemented only at the stage of a feasible solution construction by a polynomial algorithm (the first polynomial component of the PSC-algorithm). The second polynomial component of the PSC-algorithm is an approximation algorithm with polynomial complexity. For NP-hard (NP-hard in the strong sense) combinatorial optimization problems, a PSC-algorithm may include an exact algorithm for its solving in case if sufficient conditions were found, satisfying of which during this algorithm execution turns it into a polynomial complexity algorithm (Chaps.  4 and  5). We also give a brief overview of the monograph’s chapters content.


  1. 1.
    Zgurovsky, M.Z., Pavlov, A.A.: Prinyatie Resheniy v Setevyh Sistemah s Ogranichennymi Resursami (Пpинятиe peшeний в ceтeвыx cиcтeмax c oгpaничeнными pecypcaми; Decision Making in Network Systems with Limited Resources). Naukova dumka, Kyiv (2010) (in Russian)Google Scholar
  2. 2.
    Pavlov, A.A. (ed.): Konstruktivnye Polinomialnye Algoritmy Resheniya Individualnyh Zadach iz Klassa NP (Кoнcтpyктивныe пoлинoмиaльныe aлгopитмы peшeния индивидyaльныx зaдaч из клacca NP; Constructive Polynomial Algorithms for Solving Individual Problems from the Class NP). Tehnika, Kyiv (1993) (in Russian)Google Scholar
  3. 3.
    Pavlov, A.A., Pavlova, L.A.: PDC-algorithms for intractable combinatorial problems. Theory and methodology of design. “Karpatskij region” shelf #15, Uzhhorod (1998)Google Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co, San Francisco (1979). Scholar
  5. 5.
    Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: past, present and future. Eur. J. Oper. Res. 113, 390–434 (1999). Scholar
  6. 6.
    Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Cham (2016). Scholar
  7. 7.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of Production and Inventory. Handbook in Operations Research and Management Science, vol. 4, pp. 445–522. North-Holland, Amsterdam (1993). Scholar
  8. 8.
    Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  9. 9.
    Lawrence, S.: Supplement to resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. GSIA, Carnegie-Mellon University, Pittsburgh (1984)Google Scholar
  10. 10.
    Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Oper. Res. 25(1), 45–61 (1977). Scholar
  11. 11.
    Grabot, B., Geneste, L.: Dispatching rules in scheduling: a fuzzy approach. Int. J. Prod. Res. 32(4), 903–915 (1994). Scholar
  12. 12.
    Werner, F., Winkler, A.: Insertion techniques for the heuristic solution of the job-shop problem. Discrete Appl. Math. 58(2), 191–211 (1995). Scholar
  13. 13.
    Morton, T.E., Pentico, D.W.: Heuristic Scheduling Systems: With Applications to Production Systems and Project Management. Wiley, New York (1993)Google Scholar
  14. 14.
    Sabuncuoglu, I., Bayiz, M.: A beam search based algorithm for the job shop scheduling problem. Research Report IEOR-9705. Bilkent University, Bilkent (1997)Google Scholar
  15. 15.
    Fisher, M.L., Rinnooy Kan, A.H.G.: The design, analysis and implementation of heuristics. Manag. Sci. 34(3), 263–265 (1988). Scholar
  16. 16.
    Glover, F., Greenberg, H.J.: New approaches for heuristic search: a bilateral linkage with artificial intelligence. Eur. J. Oper. Res. 39(2), 119–130 (1989). Scholar
  17. 17.
    Rodammer, F.A., White, K.P., Jr.: A recent survey of production scheduling. IEEE Trans. Syst. Man Cybern. 18(6), 841–851 (1988). Scholar
  18. 18.
    Sergienko, I.V., Kapitonova, Y.V., Lebedeva, T.T.: Informatika v Ukraine: Stanovlenie, Razvitie, Problemy (Инфopмaтикa в Укpaинe: cтaнoвлeниe, paзвитиe, пpoблeмы; Informatics in Ukraine: Formation, Development, Problems). Naukova dumka, Kyiv (1999) (in Russian)Google Scholar
  19. 19.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988). Scholar
  20. 20.
    Yannakakis, M.: The analysis of local search problems and their heuristics. In: Choffrut, C., Lengauer, T. (eds.) STACS 90. Lecture Notes in Computer Science, vol. 415, pp. 298–311. Springer, Berlin (1990). Scholar
  21. 21.
    Sergienko, I.V.: O primenenii metoda vektora spada dlya resheniya zadach optimizacii kombinatornogo tipa (O пpимeнeнии мeтoдa вeктopa cпaдa для peшeния зaдaч oптимизaции кoмбинaтopнoгo типa; On the application of the recession vector method to solve optimization problems of combinatorial type). Upravlyayuschie sistemy i mashiny 2, 86–94 (1975) (in Russian)Google Scholar
  22. 22.
    Bykov, A.Y., Artamonova, A.Y.: Modifikaciya metoda vektora spada dlya optimizacionno-imitacionnogo podhoda k zadacham proektirovaniya sistem zaschity informacii (Moдификaция мeтoдa вeктopa cпaдa для oптимизaциoннo-имитaциoннoгo пoдxoдa к зaдaчaм пpoeктиpoвaния cиcтeм зaщиты инфopмaции; A modified recession vector method based on the optimization-simulation approach to design problems of information security systems). Nauka i Obrazovanie of Bauman MSTU, vol. 1, pp. 158–175 (2015). (in Russian)
  23. 23.
    Shilo, V.P.: Metod globalnogo ravnovesnogo poiska (Meтoд глoбaльнoгo paвнoвecнoгo пoиcкa; Global equilibrium search method). Cybern. Syst. Anal. 35(1), 74–81 (1999) (in Russian)Google Scholar
  24. 24.
    Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job-shop scheduling. Manag. Sci. 34(3), 391–401 (1988). Scholar
  25. 25.
    Balas, E., Lancia, G., Serafini, P., et al.: Job-shop scheduling with deadlines. J. Comb. Optim. 1(4), 329–353 (1998). Scholar
  26. 26.
    Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job-shop scheduling. Manag. Sci. 44(2), 262–275 (1998). Scholar
  27. 27.
    Caseau, Y., Laburthe, F.: Disjunctive scheduling with task intervals. LIENS Technical Report 95-25. Laboratoire d’Informatique de l’ Ecole Normale Superieure, Paris (1995)Google Scholar
  28. 28.
    Demirkol, E., Mehta, S., Uzsoy, R.: A computational study of shifting bottleneck procedures for shop scheduling problems. J. Heuristics 3(2), 111–137 (1997). Scholar
  29. 29.
    Yamada, T., Nakano, R.: Job-shop scheduling by simulated annealing combined with deterministic local search. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory and Applications, pp. 237–248. Springer, Boston (1996). Scholar
  30. 30.
    Falkenauer, E., Bouffouix, S.: A genetic algorithm for job-shop. In: Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, 9–11 April 1991.
  31. 31.
    Nakano, R., Yamada, T.: Conventional genetic algorithm for job-shop problems. In: Kenneth, M.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms and their Applications, San Diego (1991)Google Scholar
  32. 32.
    Aarts, E.H.L., Van Laarhooven, P.J.M., Ulder, N.L.J.: Local search based algorithms for job-shop scheduling. Working Paper. University of Technology, Eindhoven (1991)Google Scholar
  33. 33.
    Dorndorf, U., Pesch, E.: Evolution based learning in a job-shop scheduling environment. Comp. Oper. Res. 22(1), 25–40 (1995). Scholar
  34. 34.
    Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 42–60. Pitman, London (1987)Google Scholar
  35. 35.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. C3P Report 826: Caltech Concurrent Computation Program, Caltech (1989)Google Scholar
  36. 36.
    Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.-J., et al.: Genetic local search algorithm for the travelling salesman problem. Lect. Notes Comput. Sci. 496, 109–116 (1991)CrossRefGoogle Scholar
  37. 37.
    Fox, M.S.: Constraint-directed search: a case study of job shop scheduling. Dissertation, Carnegy Mellon University, Pittsburgh (1983)Google Scholar
  38. 38.
    Nuijten, W.P.M., Le Pape, C.: Constraint-based job-shop scheduling with ILOG SCHEDULER. J. Heuristics 3(4), 271–286 (1998). Scholar
  39. 39.
    Pesch, E., Tetzlaff, U.A.W.: Constraint propagation based scheduling of job shops. INFORMS J. Comput. 8(2), 144–157 (1996). Scholar
  40. 40.
    Sadeh, N.: Look-ahead techniques for micro-opportunistic job shop scheduling. Dissertation, Carnegie Mellon University, Pittsburgh (1991)Google Scholar
  41. 41.
    Foo, S.Y., Takefuji, Y.: Integer linear programming neural networks for job-shop scheduling. In: IEEE International Conference on Neural Networks, San Diego, 24–27 July 1988Google Scholar
  42. 42.
    Foo, S.Y., Takefuji, Y.: Stochastic neural networks for solving job-shop scheduling: Part 1. problem representation. In: IEEE International Conference on Neural Networks, San Diego, 24–27 July 1988Google Scholar
  43. 43.
    Foo, S.Y., Takefuji, Y.: Stochastic neural networks for solving job-shop scheduling: part 2. Architecture and simulations. IEEE International Conference on Neural Networks, San Diego, 24–27 July 1988Google Scholar
  44. 44.
    Sabuncuoglu, I., Gurgun, B.: A neural network model for scheduling problems. Eur. J. Oper. Res. 93(2), 288–299 (1996). Scholar
  45. 45.
    Zhou, D.N., Cherkassky, V., Baldwin, T.R., et al.: Scaling neural networks for job-shop scheduling. In: Proceedings of International Joint Conference on Neural Networks (IJCNN’90), San Diego, 17–21 June 1990, pp. 889–894.
  46. 46.
    Zhou, D.N., Cherkassky, V., Baldwin, T.R., et al.: A neural network approach to job-shop scheduling. IEEE Trans. Neural. Netw. 2(1), 175–179 (1991). Scholar
  47. 47.
    Dorigo, M.: Optimization, learning and natural algorithms. Dissertation, Politecnico di Milano (1992)Google Scholar
  48. 48.
    Donati, A.V., Darley, V., Ramachandran, B.: An ant-bidding algorithm for multistage flowshop scheduling problem: optimization and phase transitions. In: Siarry, P., Michalewicz, Z. (eds.) Advances in Metaheuristics for Hard Optimization, pp. 111–136. Springer, Berlin (2008).
  49. 49.
    Prabhakar, B., Dektar, K.N., Gordon, D.M.: The regulation of ant colony foraging activity without spatial information. PLoS Comput. Biol. 8(8), e1002670 (2012). Scholar
  50. 50.
    Brucker, P., Hurink, J., Werner, F.: Improving local search heuristics for some scheduling problems—I. Discrete Appl. Math. 65(1–3), 97–122 (1996). Scholar
  51. 51.
    Brucker, P., Hurink, J., Werner, F.: Improving local search heuristics for some scheduling problems. Part II. Discrete Appl. Math. 72(1–2), 47–69 (1997). Scholar
  52. 52.
    Lourenco, H.R.D.: A computational study of the job-shop and the flow-shop scheduling problems. Dissertation, Cornell University (1993)Google Scholar
  53. 53.
    Lourenco, H.R.D.: Job-shop scheduling: computational study of local search and large-step optimization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995). Scholar
  54. 54.
    Lourenco, H.R.D., Zwijnenburg, M.: Combining the large-step optimization with tabu-search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory and Applications, pp. 219–236. Springer, Boston (1996). Scholar
  55. 55.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for traveling salesman problem. Complex Syst. 5(3), 299–326 (1989)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for TSP incorporating local search heuristics. Oper. Res. Lett. 11(4), 219–224 (1992). Scholar
  57. 57.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986). Scholar
  58. 58.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977). Scholar
  59. 59.
    Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989). Scholar
  60. 60.
    Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990). Scholar
  61. 61.
    Glover, F., Laguna, M.: Tabu Search. Springer, Boston (1997). Scholar
  62. 62.
    Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job-shop problem. Manag. Sci. 42(6), 797–813 (1996). Scholar
  63. 63.
    Taillard, E.: Parallel taboo search technique for the job-shop scheduling problem. Internal Research Report ORWP89/11. Ecole Polytechnique Federale de Lausanne, Lausanne (1989)Google Scholar
  64. 64.
    Edelkamp, S., Schrödl, S.: Heuristic Search: Theory and Applications. Morgan Kaufmann Publishers, Waltham, MA (2012).
  65. 65.
    Resende, M.G.C.: A GRASP for job shop scheduling. In: INFORMS National Meeting, pp. 23–31, San Diego, CA, 4–7 May 1997Google Scholar
  66. 66.
    Matsuo, H., Suh, C.J., Sullivan, R.S.: A controlled search simulated annealing method for the general job-shop scheduling problem. Working Paper. University of Texas, Austin (1988)Google Scholar
  67. 67.
    Van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job-shop scheduling by simulated annealing. Report OS-R8809. Centrum voor Wiskunde en Informatica, Amsterdam (1988)Google Scholar
  68. 68.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)zbMATHGoogle Scholar
  69. 69.
    Michel, L., Hentenryck, P.V.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol. 7298, pp. 228–243. Springer, Berlin (2012). Scholar
  70. 70.
    Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode. (2018). Accessed 02 Apr 2018.
  71. 71.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009).
  72. 72.
    Pavlov, A.A. (ed.): Osnovy Sistemnogo Analiza i Proektirovaniya ASU (Ocнoвы cиcтeмнoгo aнaлизa и пpoeктиpoвaния ACУ; Fundamentals of System Analysis and Design of Automated Control Systems). Vyshcha Shkola, Kyiv (1991) (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kyiv Polytechnic InstituteNational Technical University of UkraineKyivUkraine
  2. 2.Faculty of Informatics and Computer ScienceNational Technical University of UkraineKyivUkraine

Personalised recommendations