Skip to main content

Molecular Profiling in Pancreatic Ductal Adenocarcinoma

  • Chapter
  • First Online:
Management of Localized Pancreatic Cancer
  • 438 Accesses

Abstract

Pancreatic cancer (PC) is a highly lethal malignancy, and therapeutic advances over the last decade have translated into a survival benefit that can at best be characterized as modest. Approximately 53,670 people develop exocrine PC each year in the United States, and almost all are expected to die from the disease [1]. PC is expected to become the second leading cause of cancer-related mortality in the United States, second only to lung cancer in the next decade [1]. In the absence of validated predictive biomarkers to guide selection of therapy, clinical trial design in PC, over the last several decades, has defaulted to an “all-comers” approach. In clinical practice, it is well known that the inherent biology and response to treatment can be quite varied among patients with PC, arguing for their phenotypic/genotypic characterization, and biomarker-enriched treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  Google Scholar 

  2. Matthaei H, et al. Cystic precursors to invasive pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2011;8(3):141–50.

    Article  Google Scholar 

  3. Winter JM, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg. 2006;10(9):1199–210; discussion 1210–1

    Article  Google Scholar 

  4. Hruban RH, et al. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6(8):2969–72.

    CAS  Google Scholar 

  5. Moskaluk CA, Hruban RH, Kern SE. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 1997;57(11):2140–3.

    CAS  PubMed  Google Scholar 

  6. Wilentz RE, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60(7):2002–6.

    CAS  PubMed  Google Scholar 

  7. Hahn SA, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst. 2003;95(3):214–21.

    Article  CAS  Google Scholar 

  8. Jones S, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217.

    Article  CAS  Google Scholar 

  9. Klein AP, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.

    Article  CAS  Google Scholar 

  10. Rogers CD, et al. The genetics of FANCC and FANCG in familial pancreatic cancer. Cancer Biol Ther. 2004;3(2):167–9.

    Article  CAS  Google Scholar 

  11. Bardeesy N, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A. 2006;103(15):5947–52.

    Article  CAS  Google Scholar 

  12. Hingorani SR, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7(5):469–83.

    Article  CAS  Google Scholar 

  13. Skoulidis F, et al. Germline Brca2 heterozygosity promotes Kras(G12D) -driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell. 2010;18(5):499–509.

    Article  CAS  Google Scholar 

  14. Bailey P, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.

    Article  CAS  Google Scholar 

  15. Biankin AV, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.

    Article  CAS  Google Scholar 

  16. Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.

    Article  CAS  Google Scholar 

  17. Waddell N, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.

    Article  CAS  Google Scholar 

  18. Collisson EA, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3.

    Article  CAS  Google Scholar 

  19. Moffitt RA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78.

    Article  CAS  Google Scholar 

  20. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  Google Scholar 

  21. Luttges J, et al. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol. 2001;158(5):1677–83.

    Article  CAS  Google Scholar 

  22. Wilentz RE, et al. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res. 1998;58(20):4740–4.

    CAS  PubMed  Google Scholar 

  23. Chari ST, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693–712.

    Article  Google Scholar 

  24. Cooper CS, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72.

    Article  CAS  Google Scholar 

  25. Martincorena I, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880–6.

    Article  CAS  Google Scholar 

  26. Ross-Innes CS, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat Genet. 2015;47(9):1038–46.

    Article  CAS  Google Scholar 

  27. Notta F, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538(7625):378–82.

    Article  CAS  Google Scholar 

  28. Badea L, et al. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepato-Gastroenterology. 2008;55(88):2016–27.

    CAS  PubMed  Google Scholar 

  29. Benito M, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004;20(1):105–14.

    Article  CAS  Google Scholar 

  30. Herschkowitz JI, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8(5):R76.

    Article  Google Scholar 

  31. Brunet JP, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A. 2004;101(12):4164–9.

    Article  CAS  Google Scholar 

  32. Balagurunathan Y, et al. Gene expression profiling-based identification of cell-surface targets for developing multimeric ligands in pancreatic cancer. Mol Cancer Ther. 2008;7(9):3071–80.

    Article  CAS  Google Scholar 

  33. Grutzmann R, et al. Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia. 2004;6(5):611–22.

    Article  Google Scholar 

  34. Pei H, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16(3):259–66.

    Article  CAS  Google Scholar 

  35. Lee JJ, et al. Stromal response to hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A. 2014;111(30):E3091–100.

    Article  CAS  Google Scholar 

  36. Olive KP, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.

    Article  CAS  Google Scholar 

  37. Ozdemir BC, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas Cancer with reduced survival. Cancer Cell. 2015;28(6):831–3.

    Article  CAS  Google Scholar 

  38. Rhim AD, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47.

    Article  CAS  Google Scholar 

  39. Alexandrov LB, et al. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013;3(1):246–59.

    Article  CAS  Google Scholar 

  40. Biton A, et al. Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep. 2014;9(4):1235–45.

    Article  CAS  Google Scholar 

  41. Hansen KD, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75.

    Article  CAS  Google Scholar 

  42. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(12):686–700.

    Article  CAS  Google Scholar 

  43. Irizarry RA, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

    Article  CAS  Google Scholar 

  44. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    Article  CAS  Google Scholar 

  45. Nones K, et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer. 2014;135(5):1110–8.

    Article  CAS  Google Scholar 

  46. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017;32(2):185–203.e13.

    Google Scholar 

  47. Carter SL, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413–21.

    Article  CAS  Google Scholar 

  48. Chantrill LA, et al. Precision medicine for advanced pancreas Cancer: the individualized molecular pancreatic Cancer therapy (IMPaCT) trial. Clin Cancer Res. 2015;21(9):2029–37.

    Article  CAS  Google Scholar 

  49. Kim ES, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 2011;1(1):44–53.

    Article  CAS  Google Scholar 

  50. Le Tourneau C, et al. Designs and challenges for personalized medicine studies in oncology: focus on the SHIVA trial. Target Oncol. 2012;7(4):253–65.

    Article  Google Scholar 

  51. Thompson AM, et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the breast recurrence in tissues study (BRITS). Breast Cancer Res. 2010;12(6):R92.

    Article  Google Scholar 

  52. Tran B, et al. Cancer genomics: technology, discovery, and translation. J Clin Oncol. 2012;30(6):647–60.

    Article  Google Scholar 

  53. Tsimberidou AM, Ringborg U, Schilsky RL. Strategies to overcome clinical, regulatory, and financial challenges in the implementation of personalized medicine. Am Soc Clin Oncol Educ Book. 2013:118–25.

    Article  Google Scholar 

  54. Von Hoff DD, et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010;28(33):4877–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, B. (2019). Molecular Profiling in Pancreatic Ductal Adenocarcinoma. In: Tsai, S., Ritch, P., Erickson, B., Evans, D. (eds) Management of Localized Pancreatic Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-98944-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98944-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98943-3

  • Online ISBN: 978-3-319-98944-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics