Advertisement

Task Planning with OMT: An Application to Production Logistics

  • Francesco LeofanteEmail author
  • Erika Ábrahám
  • Armando Tacchella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11023)

Abstract

Task planning is a well-studied problem for which interesting applications exist in production logistics. Planning for such domains requires to take into account not only feasible plans, but also optimality targets, e.g., minimize time, costs or energy consumption. Although there exist several algorithms to compute optimal solutions with formal guarantees, heuristic approaches are typically preferred in practical applications, trading certified solutions for a reduced computational cost. Reverting this trend represents a standing challenge within the domain of task planning at large. In this paper we discuss our experience using Optimization Modulo Theories to synthesize optimal plans for multi-robot teams handling production processes within the RoboCup Logistics League. Besides presenting our results, we discuss challenges and possible directions for future development of OMT planning.

References

  1. 1.
    EXplainable AI Planning (2018). http://icaps18.icaps-conference.org/xaip/
  2. 2.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Bensalem, S., Havelund, K., Orlandini, A.: Verification and validation meet planning and scheduling. STTT 16(1), 1–12 (2014)CrossRefGoogle Scholar
  4. 4.
    Bit-Monnot, A., Leofante, F., Pulina, L., Ábrahám, E., Tacchella, A.: SMarTplan: a task planner for smart factories. CoRR abs/1806.07135 (2018)Google Scholar
  5. 5.
    Bjørner, N., Phan, A.-D., Fleckenstein, L.: \(\nu \)z - An optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46681-0_14CrossRefGoogle Scholar
  6. 6.
    Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+ language into SMT. In: Proceedings of ICAPS 2016, pp. 79–87 (2016)Google Scholar
  7. 7.
    Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking of NRA transition systems via incremental reduction to LRA with EUF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58–75. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_4CrossRefGoogle Scholar
  8. 8.
    Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability modulo transcendental functions via incremental linearization. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 95–113. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_7CrossRefGoogle Scholar
  9. 9.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36742-7_7CrossRefzbMATHGoogle Scholar
  10. 10.
    Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24318-4_26CrossRefzbMATHGoogle Scholar
  11. 11.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning and Acting. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  12. 12.
    Gini, M.L.: Multi-robot allocation of tasks with temporal and ordering constraints. In: Proceedings of AAAI 2018, pp. 4863–4869 (2017)Google Scholar
  13. 13.
    Hamadi, Y., Wintersteiger, C.M.: Seven challenges in parallel SAT solving. AI Mag. 34(2), 99–106 (2013)CrossRefGoogle Scholar
  14. 14.
    Hofmann, T., Niemueller, T., Claßen, J., Lakemeyer, G.: Continual planning in Golog. In: Proceeding of AAAI 2016, pp. 3346–3353 (2016)Google Scholar
  15. 15.
    Hyvärinen, A.E.J., Wintersteiger, C.M.: Parallel satisfiability modulo theories. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 141–178. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-63516-3_5CrossRefGoogle Scholar
  16. 16.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363 (1992)Google Scholar
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of NIPS 2012, pp. 1097–1105 (2012)Google Scholar
  18. 18.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  19. 19.
    Leofante, F.: Guaranteed plans for multi-robot systems via optimization modulo theories. In: Proceedings of AAAI 2018 (2018)Google Scholar
  20. 20.
    Leofante, F.: Optimal multi-robot task planning: from synthesis to execution (and back). In: Proceeding of IJCAI 2018 (2018, to appear)Google Scholar
  21. 21.
    Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: On the synthesis of guaranteed-quality plans for robot fleets in logistics scenarios via optimization modulo theories. In: Proceedings of IRI 2017, pp. 403–410 (2017)Google Scholar
  22. 22.
    Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: Integrated Synthesis and Execution of Optimal Plans for Multi-Robot Systems in Logistics. Information Systems Frontiers, pp. 1–21. Springer, New York (2018).  https://doi.org/10.1007/s10796-018-9858-3CrossRefGoogle Scholar
  23. 23.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  24. 24.
    Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for logistics robots in simulation. In: Proceeding of PlanRob@ICAPS 2016 (2016)Google Scholar
  25. 25.
    Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental task-level reasoning in a competitive factory automation scenario. In: AAAI Spring Symposium - Designing Intelligent Robots: Reintegrating AI (2013)Google Scholar
  26. 26.
    Niemueller, T., Lakemeyer, G., Ferrein, A.: The RoboCup Logistics League as a benchmark for planning in robotics. In: Proceeding of PlanRob@ICAPS 2015 (2015)Google Scholar
  27. 27.
    Niemueller, T., Lakemeyer, G., Leofante, F., Ábrahám, E.: Towards CLIPS-based task execution and monitoring with SMT-based decision optimization. In: Proceedings of PlanRob@ICAPS 2017 (2017)Google Scholar
  28. 28.
    Nunes, E., Manner, M.D., Mitiche, H., Gini, M.L.: A taxonomy for task allocation problems with temporal and ordering constraints. Robot. Auton. Syst. 90, 55–70 (2017)CrossRefGoogle Scholar
  29. 29.
    Popplestone, R., Ambler, A., Bellos, I.: RAPT: a language for describing assemblies. Ind. Robot Int. J. 5(3), 131–137 (1978)CrossRefGoogle Scholar
  30. 30.
    RCLL Technical Committee: RoboCup Logistics League – Rules and regulations 2017 (2017)Google Scholar
  31. 31.
    Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs. ACM Trans. Comput. Log. 16(2), 12:1–12:43 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. In: Proceedings of CAV 2015, pp. 447–454 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Francesco Leofante
    • 1
    • 2
    Email author
  • Erika Ábrahám
    • 2
  • Armando Tacchella
    • 1
  1. 1.University of GenoaGenoaItaly
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations