Skip to main content

Robotics and Integrated Formal Methods: Necessity Meets Opportunity

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11023)

Abstract

Robotic systems are multi-dimensional entities, combining both hardware and software, that are heavily dependent on, and influenced by, interactions with the real world. They can be variously categorised as embedded, cyber-physical, real-time, hybrid, adaptive and even autonomous systems, with a typical robotic system being likely to contain all of these aspects. The techniques for developing and verifying each of these system varieties are often quite distinct. This, together with the sheer complexity of robotic systems, leads us to argue that diverse formal techniques must be integrated in order to develop, verify, and provide certification evidence for, robotic systems. Furthermore, we propose the fast evolving field of robotics as an ideal catalyst for the advancement of integrated formal methods research, helping to drive the field in new and exciting directions and shedding light on the development of large-scale, dynamic, complex systems.

Keywords

  • Robotic Systems
  • Probabilistic Temporal Logic (PTL)
  • Robot Swarm
  • Safety Case
  • Agent Programming Language

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Work supported through EPSRC Hubs for Robotics and AI in Hazardous Environments: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and EP/R026084 (RAIN).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98938-9_10
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-98938-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Notes

  1. 1.

    http://tiny.cc/Luckcuck2018.

References

  1. Akhtar, N.: Contribution to the formal specification and verification of a multi-agent robotic system. Eur. J. Sci. Res. 117(1), 35–55 (2014)

    Google Scholar 

  2. Aniculaesei, A., Arnsberger, D., Howar, F., Rausch, A.: Towards the verification of safety-critical autonomous systems in dynamic environments. Electron. Proc. Theor. Comput. Sci. 232, 79–90 (2016)

    MathSciNet  CrossRef  Google Scholar 

  3. Antuña, L., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduction enables model checking of more complex emergent behaviours of swarm navigation algorithms. In: Dixon, C., Tuyls, K. (eds.) TAROS 2015. LNCS (LNAI), vol. 9287, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22416-9_4

    CrossRef  Google Scholar 

  4. Bi, Z.M., Lang, S.Y.T., Verner, M., Orban, P.: Development of reconfigurable machines. Int. J. Adv. Manuf. Technol. 39(11–12), 1227–1251 (2008)

    CrossRef  Google Scholar 

  5. Braman, J.M.B., Murray, R.M., Wagner, D.A.: Safety verification of a fault tolerant reconfigurable autonomous goal-based robotic control system. In: International Conference on Intelligent Robots and Systems, pp. 853–858. IEEE (2007)

    Google Scholar 

  6. Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08915-7_4

    CrossRef  Google Scholar 

  7. Choi, J., Kim, S., Tsourdos, A.: Verification of heterogeneous multi-agent system using MCMAS. Int. J. Syst. Sci. 46(4), 634–651 (2015)

    MathSciNet  CrossRef  Google Scholar 

  8. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Using CSP\(\vert \vert \)B components: application to a platoon of vehicles. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 103–118. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03240-0_11

    CrossRef  Google Scholar 

  9. Denney, E., Pai, G.: Automating the assembly of aviation safety cases. IEEE Trans. Reliab. 63(4), 830–849 (2014)

    CrossRef  Google Scholar 

  10. Dennis, L.A., Fisher, M., Webster, M., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

    CrossRef  Google Scholar 

  11. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_11

    CrossRef  Google Scholar 

  12. D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS architecture: a specification of the distributed multi-agent reasoning system. Auton. Agent. Multi. Agent. Syst. 9(1/2), 5–53 (2004)

    CrossRef  Google Scholar 

  13. Fisher, M., Dennis, L.A., Webster, M.: Verifying autonomous systems. Commun. ACM 56(9), 84–93 (2013)

    CrossRef  Google Scholar 

  14. Hinchey, M.G., Rouff, C.A., Rash, J.L., Truszkowski, W.F.: Requirements of an integrated formal method for intelligent swarms. In: Formal Methods for Industrial Critical Systems, pp. 125–133. ACM Press (2005)

    Google Scholar 

  15. Hindriks, K.V., Meyer, J.-J.C.: Toward a programming theory for rational agents. Auton. Agent. Multi. Agent. Syst. 19(1), 4–29 (2009)

    CrossRef  Google Scholar 

  16. Izzo, P., Qu, H., Veres, S.M.: A stochastically verifiable autonomous control architecture with reasoning. In: IEEE Conference on Decision and Control, pp. 4985–4991 (2016)

    Google Scholar 

  17. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017)

    CrossRef  Google Scholar 

  18. Kamali, M., Linker, S., Fisher, M.: Modular verification of vehicle platooning with respect to decisions, space and time. arXiv preprint arXiv:1804.06647 (2018)

  19. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

    CrossRef  Google Scholar 

  20. Kossak, F., Mashkoor, A.: How to select the suitable formal method for an industrial application: a survey. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 213–228. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33600-8_13

    CrossRef  Google Scholar 

  21. Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.: Specifying safety monitors for autonomous systems using model-checking. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 262–277. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_18

    CrossRef  Google Scholar 

  22. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics and Science and Systems (2013)

    Google Scholar 

  23. Moarref, S., Kress-Gazit, H.: Decentralized control of robotic swarms from high-level temporal logic specifications. In: International Symposium on Multi-robot and Multi-agent Systems. IEEE (2017)

    Google Scholar 

  24. Morse, J., Araiza-Illan, D., Lawry, J., Richards, A., Eder, K.: Formal specification and analysis of autonomous systems under partial compliance. arXiv preprint arXiv:1603.01082 (2016)

  25. Phan, D., Yang, J., Ratasich, D., Grosu, R., Smolka, S.A., Stoller, S.D.: Collision avoidance for mobile robots with limited sensing and limited information about the environment. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 201–215. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_13

    CrossRef  Google Scholar 

  26. Podorozhny, R., Khurshid, S., Perry, D., Zhang, X.: Verification of multi-agent negotiations using the alloy analyzer. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 501–517. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5_26

    CrossRef  Google Scholar 

  27. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  28. Ribeiro, P., Miyazawa, A., Li, W., Cavalcanti, A., Timmis, J.: Modelling and verification of timed robotic controllers. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 18–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_2

    CrossRef  Google Scholar 

  29. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

    CrossRef  Google Scholar 

  30. Simmons, R., Pecheur, C., Srinivasan, G.: Towards automatic verification of autonomous systems. In: International Conference on Intelligent Robots and Systems, vol. 2, pp. 1410–1415. IEEE (2000)

    Google Scholar 

  31. Smith, G., Li, Q.: MAZE: an extension of Object-Z for multi-agent systems. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 72–85. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3_6

    CrossRef  Google Scholar 

  32. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., Nummila, L.: Formal development and assessment of a reconfigurable on-board satellite system. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 210–222. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33678-2_18

    CrossRef  Google Scholar 

  33. Webster, M., Cameron, N., Fisher, M., Jump, M.: Generating certification evidence for autonomous unmanned aircraft using model checking and simulation. J. Aerosp. Inf. Syst. 11(5), 258–279 (2014)

    Google Scholar 

  34. Webster, M., et al.: Toward reliable autonomous robotic assistants through formal verification: a case study. IEEE Trans. Hum.-Mach. Syst. 46(2), 186–196 (2016)

    CrossRef  Google Scholar 

  35. Webster, M., et al.: An assurance-based approach to verification and validation of human-robot teams. arXiv preprint arXiv:1608.07403 (2016)

  36. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal methods in self-adaptive systems. In: International C* Conference on Computer Science and Software Engineering, pp. 67–79. ACM (2012)

    Google Scholar 

  37. Weyns, D., Malek, S.: FORMS: a formal reference model for self-adaptation. In: International Conference on Autonomic Computing, pp. 205–214. ACM (2010)

    Google Scholar 

  38. Winfield, A.F., Sa, J., Gago, M.C.F., Dixon, C., Fisher, M.: On formal specification of emergent behaviours in swarm robotic systems. Int. J. Adv. Robot. Syst. 2(4), 363–370 (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Farrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Farrell, M., Luckcuck, M., Fisher, M. (2018). Robotics and Integrated Formal Methods: Necessity Meets Opportunity. In: Furia, C., Winter, K. (eds) Integrated Formal Methods. IFM 2018. Lecture Notes in Computer Science(), vol 11023. Springer, Cham. https://doi.org/10.1007/978-3-319-98938-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98938-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98937-2

  • Online ISBN: 978-3-319-98938-9

  • eBook Packages: Computer ScienceComputer Science (R0)