Robotics and Integrated Formal Methods: Necessity Meets Opportunity

  • Marie FarrellEmail author
  • Matt Luckcuck
  • Michael Fisher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11023)


Robotic systems are multi-dimensional entities, combining both hardware and software, that are heavily dependent on, and influenced by, interactions with the real world. They can be variously categorised as embedded, cyber-physical, real-time, hybrid, adaptive and even autonomous systems, with a typical robotic system being likely to contain all of these aspects. The techniques for developing and verifying each of these system varieties are often quite distinct. This, together with the sheer complexity of robotic systems, leads us to argue that diverse formal techniques must be integrated in order to develop, verify, and provide certification evidence for, robotic systems. Furthermore, we propose the fast evolving field of robotics as an ideal catalyst for the advancement of integrated formal methods research, helping to drive the field in new and exciting directions and shedding light on the development of large-scale, dynamic, complex systems.


  1. 1.
    Akhtar, N.: Contribution to the formal specification and verification of a multi-agent robotic system. Eur. J. Sci. Res. 117(1), 35–55 (2014)Google Scholar
  2. 2.
    Aniculaesei, A., Arnsberger, D., Howar, F., Rausch, A.: Towards the verification of safety-critical autonomous systems in dynamic environments. Electron. Proc. Theor. Comput. Sci. 232, 79–90 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Antuña, L., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduction enables model checking of more complex emergent behaviours of swarm navigation algorithms. In: Dixon, C., Tuyls, K. (eds.) TAROS 2015. LNCS (LNAI), vol. 9287, pp. 26–37. Springer, Cham (2015). Scholar
  4. 4.
    Bi, Z.M., Lang, S.Y.T., Verner, M., Orban, P.: Development of reconfigurable machines. Int. J. Adv. Manuf. Technol. 39(11–12), 1227–1251 (2008)CrossRefGoogle Scholar
  5. 5.
    Braman, J.M.B., Murray, R.M., Wagner, D.A.: Safety verification of a fault tolerant reconfigurable autonomous goal-based robotic control system. In: International Conference on Intelligent Robots and Systems, pp. 853–858. IEEE (2007)Google Scholar
  6. 6.
    Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). Scholar
  7. 7.
    Choi, J., Kim, S., Tsourdos, A.: Verification of heterogeneous multi-agent system using MCMAS. Int. J. Syst. Sci. 46(4), 634–651 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Using CSP\(\vert \vert \)B components: application to a platoon of vehicles. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 103–118. Springer, Heidelberg (2009). Scholar
  9. 9.
    Denney, E., Pai, G.: Automating the assembly of aviation safety cases. IEEE Trans. Reliab. 63(4), 830–849 (2014)CrossRefGoogle Scholar
  10. 10.
    Dennis, L.A., Fisher, M., Webster, M., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)CrossRefGoogle Scholar
  11. 11.
    Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 172–189. Springer, Cham (2017). Scholar
  12. 12.
    D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS architecture: a specification of the distributed multi-agent reasoning system. Auton. Agent. Multi. Agent. Syst. 9(1/2), 5–53 (2004)CrossRefGoogle Scholar
  13. 13.
    Fisher, M., Dennis, L.A., Webster, M.: Verifying autonomous systems. Commun. ACM 56(9), 84–93 (2013)CrossRefGoogle Scholar
  14. 14.
    Hinchey, M.G., Rouff, C.A., Rash, J.L., Truszkowski, W.F.: Requirements of an integrated formal method for intelligent swarms. In: Formal Methods for Industrial Critical Systems, pp. 125–133. ACM Press (2005)Google Scholar
  15. 15.
    Hindriks, K.V., Meyer, J.-J.C.: Toward a programming theory for rational agents. Auton. Agent. Multi. Agent. Syst. 19(1), 4–29 (2009)CrossRefGoogle Scholar
  16. 16.
    Izzo, P., Qu, H., Veres, S.M.: A stochastically verifiable autonomous control architecture with reasoning. In: IEEE Conference on Decision and Control, pp. 4985–4991 (2016)Google Scholar
  17. 17.
    Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017)CrossRefGoogle Scholar
  18. 18.
    Kamali, M., Linker, S., Fisher, M.: Modular verification of vehicle platooning with respect to decisions, space and time. arXiv preprint arXiv:1804.06647 (2018)
  19. 19.
    Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)CrossRefGoogle Scholar
  20. 20.
    Kossak, F., Mashkoor, A.: How to select the suitable formal method for an industrial application: a survey. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 213–228. Springer, Cham (2016). Scholar
  21. 21.
    Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.: Specifying safety monitors for autonomous systems using model-checking. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 262–277. Springer, Cham (2014). Scholar
  22. 22.
    Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics and Science and Systems (2013)Google Scholar
  23. 23.
    Moarref, S., Kress-Gazit, H.: Decentralized control of robotic swarms from high-level temporal logic specifications. In: International Symposium on Multi-robot and Multi-agent Systems. IEEE (2017)Google Scholar
  24. 24.
    Morse, J., Araiza-Illan, D., Lawry, J., Richards, A., Eder, K.: Formal specification and analysis of autonomous systems under partial compliance. arXiv preprint arXiv:1603.01082 (2016)
  25. 25.
    Phan, D., Yang, J., Ratasich, D., Grosu, R., Smolka, S.A., Stoller, S.D.: Collision avoidance for mobile robots with limited sensing and limited information about the environment. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 201–215. Springer, Cham (2015). Scholar
  26. 26.
    Podorozhny, R., Khurshid, S., Perry, D., Zhang, X.: Verification of multi-agent negotiations using the alloy analyzer. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 501–517. Springer, Heidelberg (2007). Scholar
  27. 27.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)Google Scholar
  28. 28.
    Ribeiro, P., Miyazawa, A., Li, W., Cavalcanti, A., Timmis, J.: Modelling and verification of timed robotic controllers. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 18–33. Springer, Cham (2017). Scholar
  29. 29.
    Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). Scholar
  30. 30.
    Simmons, R., Pecheur, C., Srinivasan, G.: Towards automatic verification of autonomous systems. In: International Conference on Intelligent Robots and Systems, vol. 2, pp. 1410–1415. IEEE (2000)Google Scholar
  31. 31.
    Smith, G., Li, Q.: MAZE: an extension of Object-Z for multi-agent systems. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 72–85. Springer, Heidelberg (2014). Scholar
  32. 32.
    Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., Nummila, L.: Formal development and assessment of a reconfigurable on-board satellite system. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 210–222. Springer, Heidelberg (2012). Scholar
  33. 33.
    Webster, M., Cameron, N., Fisher, M., Jump, M.: Generating certification evidence for autonomous unmanned aircraft using model checking and simulation. J. Aerosp. Inf. Syst. 11(5), 258–279 (2014)Google Scholar
  34. 34.
    Webster, M., et al.: Toward reliable autonomous robotic assistants through formal verification: a case study. IEEE Trans. Hum.-Mach. Syst. 46(2), 186–196 (2016)CrossRefGoogle Scholar
  35. 35.
    Webster, M., et al.: An assurance-based approach to verification and validation of human-robot teams. arXiv preprint arXiv:1608.07403 (2016)
  36. 36.
    Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal methods in self-adaptive systems. In: International C* Conference on Computer Science and Software Engineering, pp. 67–79. ACM (2012)Google Scholar
  37. 37.
    Weyns, D., Malek, S.: FORMS: a formal reference model for self-adaptation. In: International Conference on Autonomic Computing, pp. 205–214. ACM (2010)Google Scholar
  38. 38.
    Winfield, A.F., Sa, J., Gago, M.C.F., Dixon, C., Fisher, M.: On formal specification of emergent behaviours in swarm robotic systems. Int. J. Adv. Robot. Syst. 2(4), 363–370 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations