Skip to main content

Overview of LifeCLEF 2018: A Large-Scale Evaluation of Species Identification and Recommendation Algorithms in the Era of AI

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2018)

Abstract

Building accurate knowledge of the identity, the geographic distribution and the evolution of living species is essential for a sustainable development of humanity, as well as for biodiversity conservation. Unfortunately, such basic information is often only partially available for professional stakeholders, teachers, scientists and citizens, and often incomplete for ecosystems that possess the highest diversity. In this context, an ultimate ambition is to set up innovative information systems relying on the automated identification and understanding of living organisms as a means to engage massive crowds of observers and boost the production of biodiversity and agro-biodiversity data. The LifeCLEF 2018 initiative proposes three data-oriented challenges related to this vision, in the continuity of the previous editions, but with several consistent novelties intended to push the boundaries of the state-of-the-art in several research directions. This paper describes the methodology of the conducted evaluations as well as the synthesis of the main results and lessons learned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://ebird.org/content/ebird/.

  2. 2.

    http://www.inaturalist.org/.

  3. 3.

    http://www.xeno-canto.org/.

  4. 4.

    http://www.tela-botanica.org/.

  5. 5.

    http://www.gbif.org/.

  6. 6.

    https://stateoftheworldsplants.com/.

  7. 7.

    http://www.lifeclef.org.

  8. 8.

    http://www.imageclef.org/.

  9. 9.

    https://itunes.apple.com/fr/app/plantnet/id600547573?mt=8.

  10. 10.

    https://play.google.com/store/apps/details?id=org.plantnet.

  11. 11.

    https://github.com/kahst/BirdCLEF-Baseline.

  12. 12.

    https://www.gbif.org/.

References

  1. Atito, S., et al.: Plant identification with deep learning ensembles. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  2. Baillie, J., Hilton-Taylor, C., Stuart, S.N.: 2004 IUCN red list of threatened species: a global species assessment. IUCN (2004)

    Google Scholar 

  3. Deneu, B., Maximilien Servajean, C.B., Joly, A.: Location-based species recommendation using co-occurrences and environment - GeoLifeCLEF 2018 challenge. In: CLEF Working Notes 2018 (2018)

    Google Scholar 

  4. Bonnet, P., et al.: Plant identification: experts vs. machines in the era of deep learning. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Technologies for Environmental & Biodiversity Informatics. MMSA, pp. 131–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76445-0_8

    Chapter  Google Scholar 

  5. Botella, C., Bonnet, P., Joly, A.: Overview of GeoLifeCLEF 2018: location-based species recommendation. In: CLEF Working Notes 2018 (2018)

    Google Scholar 

  6. Briggs, F., et al.: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. J. Acoust. Soc. Am. 131, 4640 (2012)

    Article  Google Scholar 

  7. Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: bird species recognition. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007 (2007)

    Google Scholar 

  8. De’Ath, G.: Boosted trees for ecological modeling and prediction. Ecology 88(1), 243–251 (2007)

    Article  Google Scholar 

  9. Furlanello, T., Lipton, Z.C., Itti, L., Anandkumar, A.: Born again neural networks. In: Metalearn 2017 NIPS Workshop, pp. 1–5, December 2017

    Google Scholar 

  10. Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 359(1444), 655–667 (2004)

    Article  Google Scholar 

  11. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)

    Google Scholar 

  12. Goëau, H., Bonnet, P., Joly, A.: Overview of ExpertLifeCLEF 2018: how far automated identification systems are from the best experts? LifeCLEF experts vs. machine plant identification task 2018. In: CLEF 2018 (2018)

    Google Scholar 

  13. Goëau, H., et al.: The ImageCLEF 2013 plant identification task. In: CLEF 2013, Valencia (2013)

    Google Scholar 

  14. Goëau, H., et al.: The ImageCLEF 2011 plant images classification task. In: CLEF 2011 (2011)

    Google Scholar 

  15. Goëau, H., et al.: ImageCLEF 2012 plant images identification task. In: CLEF 2012, Rome (2012)

    Google Scholar 

  16. Goëau, H., Glotin, H., Planqué, R., Vellinga, W.P., Kahl, S.: Overview of BirdCLEF 2018: monophone vs. soundscape bird identification. In: CLEF Working Notes 2018 (2018)

    Google Scholar 

  17. Goëau, H., Glotin, H., Vellinga, W., Planqué, B., Joly, A.: LifeCLEF bird identification task 2017. In: Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum, Dublin, Ireland, 11–14 September 2017 (2017)

    Google Scholar 

  18. Grill, T., Schlüter, J.: Two convolutional neural networks for bird detection in audio signals. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1764–1768, August 2017

    Google Scholar 

  19. Guisan, A., Thuiller, W., Zimmermann, N.E.: Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  20. Haiwei, W., Ming, L.: Construction and improvements of bird songs’ classification system. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  21. Haupt, J., Kahl, S., Kowerko, D., Eibl, M.: Large-scale plant classification using deep convolutional neural networks. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  22. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)

    Google Scholar 

  23. Joly, A., et al.: Interactive plant identification based on social image data. Ecol. Inform. 23, 22–34 (2014)

    Article  Google Scholar 

  24. Joly, A., et al.: The ImageCLEF plant identification task 2013. In: International Workshop on Multimedia Analysis for Ecological Data (2013)

    Google Scholar 

  25. Kahl, S., Wilhelm-Stein, T., Klinck, H., Kowerko, D., Eibl, M.: A baseline for large-scale bird species identification in field recordings. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  26. Kahl, S., Wilhelm-Stein, T., Klinck, H., Kowerko, D., Eibl, M.: Recognizing birds from sound - the 2018 BirdCLEF baseline system. arXiv preprint arXiv:1804.07177 (2018)

  27. Lasseck, M.: Image-based plant species identification with deep convolutional neural networks. In: Working Notes of CLEF 2017 (Cross Language Evaluation Forum) (2017)

    Google Scholar 

  28. Lasseck, M.: Audio-based bird species identification with deep convolutional neural networks. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  29. Lasseck, M.: Machines vs. experts: working note on the ExpertLifeCLEF 2018 plant identification task. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  30. Lee, D.J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East, pp. 37–48. International Society for Optics and Photonics (2004)

    Google Scholar 

  31. Messina, J.P., et al.: Mapping global environmental suitability for Zika virus. eLife 5, e15272 (2016)

    Article  Google Scholar 

  32. Moyes, C.L., et al.: Predicting the geographical distributions of the macaque hosts and mosquito vectors of plasmodium knowlesi malaria in forested and non-forested areas. Parasit. Vectors 9(1), 242 (2016)

    Article  Google Scholar 

  33. Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF - Experimental Evaluation in Visual Information Retrieval. The Springer International Series On Information Retrieval, vol. 32. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15181-1

    Book  MATH  Google Scholar 

  34. Müller, L., Marti, M.: Two bachelor students’ adventures in machine learning. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  35. Moudhgalya, N.B., Sharan Sundar, S.D.M.P., Bose, C.A.: Hierarchically embedded taxonomy with CLNN to predict species based on spatial features. In: CLEF Working Notes 2018 (2018)

    Google Scholar 

  36. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)

    Article  MathSciNet  Google Scholar 

  37. Schlüter, J.: Bird identification from timestamped, geotagged audio recordings. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  38. Sevilla, A., Glotin, H.: Audio bird classification with inception v4 joint to an attention mechanism. In: Working Notes of CLEF 2017 (Cross Language Evaluation Forum) (2017)

    Google Scholar 

  39. Silvertown, J., et al.: Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125 (2015)

    Article  Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  41. Taubert, S., Max Mauermann, S.K.D.K., Eibl, M.: Species prediction based on environmental variables using machine learning techniques. In: CLEF Working Notes 2018 (2018)

    Google Scholar 

  42. Sulc, M., Picek, L., Matas, J.: Plant recognition by inception networks with test-time class prior estimation. In: Working Notes of CLEF 2018 (Cross Language Evaluation Forum) (2018)

    Google Scholar 

  43. Sullivan, B.L., et al.: The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014)

    Article  Google Scholar 

  44. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  45. Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)

    Article  Google Scholar 

  46. Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models. J. Acoust. Soc. Am. 123, 2424 (2008)

    Article  Google Scholar 

  47. Wäldchen, J., Rzanny, M., Seeland, M., Mäder, P.: Automated plant species identification-trends and future directions. PLOS Comput. Biol. 14(4), 1–19 (2018). https://doi.org/10.1371/journal.pcbi.1005993

    Article  Google Scholar 

  48. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

The organization of LifeCLEF 2018 was supported by the French project Floris’Tic (Tela Botanica, INRIA, CIRAD, INRA, IRD) funded in the context of the national investment program PIA. The organization of the BirdCLEF task was supported by the Xeno-Canto foundation for nature sounds as well as the French CNRS project SABIOD.ORG and EADM GDR CNRS MADICS, BRILAAM STIC-AmSud. The annotations of some soundscape were prepared with regreted wonderful Lucio Pando at Explorama Lodges, with the support of Pam Bucur, Marie Trone and H. Glotin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Joly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joly, A. et al. (2018). Overview of LifeCLEF 2018: A Large-Scale Evaluation of Species Identification and Recommendation Algorithms in the Era of AI. In: Bellot, P., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2018. Lecture Notes in Computer Science(), vol 11018. Springer, Cham. https://doi.org/10.1007/978-3-319-98932-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98932-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98931-0

  • Online ISBN: 978-3-319-98932-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics