Skip to main content

Towards a Tensor Network Representation of Complex Systems

  • Chapter
  • First Online:
Sustainable Interdependent Networks II

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 186))

Abstract

Complex networks are composed of nodes (entities) and edges (connections) with any arbitrary topology. There may also exist multiple types of interactions among these nodes and each node may admit different states in each of its interactions with its neighbors. Understanding complex networks dwells on understanding their structure and function. However, current representations model nodes as single-state entities that are connected to each other differently and treat their dynamics separately with some differential equations. Alternatively, a unified framework might be accessible using the tensor network representation that is already utilized in physics communities. In a sequel of chapters we introduce tensor network representation and renormalization as an alternative framework to explore the universal behaviors of complex systems. We hope that tensor networks can particularly pave the way for better understanding of the sustainable interdependent networks (Amini et al., Sustainable interdependent networks: from theory to application, 2018) through proposing efficient computational strategies and discovering insightful features of the network behaviors.

“It is not the strongest of the species that survives, nor the most intelligent, but the one most responsive to change.”

Charles Darwin (1809)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.

    Article  MathSciNet  Google Scholar 

  2. Amini, M. H., Boroojeni, K. G., Iyengar, S. S., Pardalos, P. M., Blaabjerg, F., & Madni, A. M. (2018). Sustainable interdependent networks: From theory to application (Vol. 145). Cham: Springer.

    Google Scholar 

  3. Amini, M. H., & Karabasoglu, O. (2018). Optimal operation of interdependent power systems and electrified transportation networks. Energies, 11(1), 196.

    Article  Google Scholar 

  4. Aygün, E., & Erzan, A. (2011). Spectral renormalization group theory on networks. Journal of Physics: Conference Series, 319, 012007. IOP Publishing.

    Google Scholar 

  5. Azhar, F., & Bialek, W. (2010). When are correlations strong? arXiv preprint arXiv:1012.5987.

    Google Scholar 

  6. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  Google Scholar 

  7. Barzel, B., & Barabási, A.-L. (2013). Universality in network dynamics. Nature Physics, 9(10), 673.

    Article  Google Scholar 

  8. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., & Walczak, A. M. (2012). Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of Sciences of the United States of America, 109(13), 4786–4791.

    Article  Google Scholar 

  9. Bianconi, G., Pin, P., & Marsili, M. (2009). Assessing the relevance of node features for network structure. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11433–11438.

    Article  Google Scholar 

  10. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology & Evolution, 12(5), 188–193.

    Article  Google Scholar 

  11. Braunstein, S. L., Ghosh, S., & Severini, S. (2006). The laplacian of a graph as a density matrix: A basic combinatorial approach to separability of mixed states. Annals of Combinatorics, 10(3), 291–317.

    Article  MathSciNet  Google Scholar 

  12. Callaway, D. S., Newman, M. E., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85(25), 5468.

    Article  Google Scholar 

  13. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., et al. (2010). Scale-free correlations in starling flocks. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11865–11870.

    Article  Google Scholar 

  14. Cisneros, L. H., Kessler, J. O., Ganguly, S., & Goldstein, R. E. (2011). Dynamics of swimming bacteria: Transition to directional order at high concentration. Physical Review E, 83(6), 061907.

    Article  Google Scholar 

  15. Cohen, R., Erez, K., Ben-Avraham, D., & Havlin, S. (2000). Resilience of the internet to random breakdowns. Physical Review Letters, 85(21), 4626.

    Article  Google Scholar 

  16. Couzin, I. (2007). Collective minds. Nature, 445(7129), 715.

    Article  Google Scholar 

  17. Daqing, L., Kosmidis, K., Bunde, A., & Havlin, S. (2011). Dimension of spatially embedded networks. Nature Physics, 7(6), 481.

    Article  Google Scholar 

  18. de Beaudrap, N., Giovannetti, V., Severini, S., & Wilson, R. (2016). Interpreting the von neumann entropy of graph laplacians, and coentropic graphs. A Panorama of Mathematics: Pure and Applied, 658, 227.

    MathSciNet  MATH  Google Scholar 

  19. De Domenico, M., & Biamonte, J. (2016). Spectral entropies as information-theoretic tools for complex network comparison. Physical Review X, 6(4), 041062.

    Article  Google Scholar 

  20. De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901.

    Article  Google Scholar 

  21. De Domenico, M., Nicosia, V., Arenas, A., & Latora, V. (2015). Structural reducibility of multilayer networks. Nature Communications, 6, 6864.

    Article  Google Scholar 

  22. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., et al. (2013). Mathematical formulation of multilayer networks. Physical Review X, 3(4), 041022.

    Article  Google Scholar 

  23. Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. (2008). Critical phenomena in complex networks. Reviews of Modern Physics, 80(4), 1275.

    Article  Google Scholar 

  24. Dorogovtsev, S. N., & Mendes, J. F. (2002). Evolution of networks. Advances in Physics, 51(4), 1079–1187 (2002).

    Google Scholar 

  25. Efrati, E., Wang, Z., Kolan, A., & Kadanoff, L. P. (2014). Real-space renormalization in statistical mechanics. Reviews of Modern Physics, 86(2), 647.

    Article  Google Scholar 

  26. Evenbly, G., & Vidal, G. (2011). Tensor network states and geometry. Journal of Statistical Physics, 145(4), 891–918.

    Article  MathSciNet  Google Scholar 

  27. Fannes, M., Nachtergaele, B., & Werner, R. F. (1992). Finitely correlated states on quantum spin chains. Communications in Mathematical Physics, 144(3), 443–490.

    Article  MathSciNet  Google Scholar 

  28. Fáth, G., & Sarvary, M. (2005). A renormalization group theory of cultural evolution. Physica A: Statistical Mechanics and Its Applications, 348, 611–629.

    Article  Google Scholar 

  29. Funk, S., Gilad, E., Watkins, C., & Jansen, V. A. (2009). The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6872–6877.

    Article  Google Scholar 

  30. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.

    Article  MathSciNet  Google Scholar 

  31. Kamyab, F., Amini, M., Sheykhha, S., Hasanpour, M., & Jalali, M. M. (2016). Demand response program in smart grid using supply function bidding mechanism. IEEE Transactions on Smart Grid, 7(3), 1277–1284.

    Article  Google Scholar 

  32. Lambiotte, R., Blondel, V. D., De Kerchove, C., Huens, E., Prieur, C., Smoreda, Z., et al. (2008). Geographical dispersal of mobile communication networks. Physica A: Statistical Mechanics and Its Applications, 387(21), 5317–5325.

    Article  Google Scholar 

  33. Longo, G., & Montévil, M. (2012). The inert vs. the living state of matter: extended criticality, time geometry, anti-entropy–An overview. Frontiers in Physiology, 3, 39.

    Google Scholar 

  34. Longo, G., Montévil, M., Sonnenschein, C., & Soto, A. M. (2015). In search of principles for a theory of organisms. Journal of Biosciences, 40(5), 955–968.

    Article  Google Scholar 

  35. Maldacena, J. (1999). The large-n limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4), 1113–1133.

    Article  MathSciNet  Google Scholar 

  36. Manfredi, P., & D’Onofrio, A. (2013). Modeling the interplay between human behavior and the spread of infectious diseases. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  37. Maslov, S. & Ispolatov, I. (2007). Propagation of large concentration changes in reversible protein-binding networks. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13655–13660.

    Article  Google Scholar 

  38. Mistani, P., et al. (in preparation) Syndemic control by social feedback.

    Google Scholar 

  39. Mohammadi, A., & Dehghani, M. J. (2014). Spectrum allocation using fuzzy logic with optimal power in wireless network. In 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE) (pp. 532–536). IEEE.

    Google Scholar 

  40. Mohammadi, A., Dehghani, M., & Ghazizadeh, E. (2018). Game theoretic spectrum allocation in femtocell networks for smart electric distribution grids. Energies, 11(7), 1635.

    Article  Google Scholar 

  41. Mohammadi, A., Mehrtash, M., & Kargarian, A. (2018). Diagonal quadratic approximation for decentralized collaborative TSO+ DSO optimal power flow. In IEEE Transactions on Smart Grid, 2018.

    Google Scholar 

  42. Molinero, C., Murcio, R., & Arcaute, E. (2017). The angular nature of road networks. Scientific Reports, 7(1), 4312.

    Article  Google Scholar 

  43. Mora, T., & Bialek, W. (2011). Are biological systems poised at criticality? Journal of Statistical Physics, 144(2), 268–302.

    Article  MathSciNet  Google Scholar 

  44. Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  MathSciNet  Google Scholar 

  45. Nicosia, V., & Latora, V. (2015). Measuring and modeling correlations in multiplex networks. Physical Review E, 92(3), 032805.

    Article  Google Scholar 

  46. Orús, R. (2014). A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349, 117–158 (2014).

    Article  MathSciNet  Google Scholar 

  47. Östlund, S., & Rommer, S. (1995). Thermodynamic limit of density matrix renormalization. Physical Review Letters, 75(19), 3537.

    Article  Google Scholar 

  48. Rommer, S., & Östlund, S. (1997). Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Physical Review B, 55(4), 2164.

    Article  Google Scholar 

  49. Schneidman, E., Berry II, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007.

    Article  Google Scholar 

  50. Shi, Y.-Y., Duan, L.-M., & Vidal, G. (2006). Classical simulation of quantum many-body systems with a tree tensor network. Physical Review A, 74(2), 022320.

    Article  Google Scholar 

  51. Si, T. (2006). Game theory and topological phase transition (2006). arXiv preprint cond-mat/0601014.

    Google Scholar 

  52. Sornette, D. (2006). Critical phenomena in natural sciences: Chaos, fractals, selforganization and disorder: Concepts and tools. Berlin: Springer Science & Business Media.

    MATH  Google Scholar 

  53. Srednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666.

    Article  MathSciNet  Google Scholar 

  54. Sumpter, D. J. (2006). The principles of collective animal behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465), 5–22.

    Article  Google Scholar 

  55. Tkačik, G., Mora, T., Marre, O., Amodei, D., Palmer, S. E., Berry, M. J., et al. (2015). Thermodynamics and signatures of criticality in a network of neurons. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11508–11513.

    Article  Google Scholar 

  56. Verstraete, F., & Cirac, J. I. (2004). Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv preprint cond-mat/0407066.

    Google Scholar 

  57. Verstraete, F., Murg, V., & Cirac, J. I. (2008). Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57(2), 143–224 (2008).

    Google Scholar 

  58. Vidal, G. (2007). Entanglement renormalization. Physical Review Letters, 99(22), 220405 (2007).

    Google Scholar 

  59. Wang, Z., Wang, L., Szolnoki, A., & Perc, M. (2015). Evolutionary games on multilayer networks: A colloquium. The European Physical Journal B, 88(5), 124.

    Article  Google Scholar 

  60. Wilde, M. M. (2013). Quantum information theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Mistani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistani, P., Pakravan, S., Gibou, F. (2019). Towards a Tensor Network Representation of Complex Systems. In: Amini, M., Boroojeni, K., Iyengar, S., Pardalos, P., Blaabjerg, F., Madni, A. (eds) Sustainable Interdependent Networks II. Studies in Systems, Decision and Control, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-319-98923-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98923-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98922-8

  • Online ISBN: 978-3-319-98923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics