Skip to main content

Sustainable Smart Cities Through the Lens of Complex Interdependent Infrastructures: Panorama and State-of-the-art

  • Chapter
  • First Online:
Sustainable Interdependent Networks II

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 186))

  • 3002 Accesses

Abstract

Smart cities are developed to enable modern functionalities (e.g., sustainable energy systems, smart power grids, and electrified transportation networks) and focus on the information and communication technologies (ICTs) in order to improve the operation and efficiency of the future cities. Further, the concept of smart cities is developed to integrate smart technologies and solutions with the foremost goal of improving the quality of life. The advanced metering, control, information, and communication technologies are the backbones of smart cities that are utilized to gather and analyze the data in order to provide energy-efficient, cost-efficient, reliable, and secure services. Smart cities focus on the coordination between different sectors including energy and transportation systems, water supply networks, and healthcare in order to enable more efficient applications. This chapter aims to provide a review on the smart cities and the needs of sustainability for the future cities, as well as the ongoing challenges for smart city implementation. Furthermore, an overview is provided to explain the interdependent power and transportation networks, as one of the key elements of future smart cities. Regarding the applications of smart cities, increasing amount of information should be gathered from the cities and community via distributed sensors, as well as the control devices. Privacy and security issues will rise due to the concerns regarding the protection of the collected data and transmitted control signals against the malicious behaviors. Such issues are also covered in this chapter. Thus, although smart cities can benefit citizens in a variety of aspects, there are some privacy and security concerns regarding the possible data leakage and malicious attacks. To enhance the acceptability of the high penetration of smart cities and their real implementation potential, all the presented aspects are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212.

    Article  Google Scholar 

  2. Dameri, R. P. (2017). Smart city implementation. Berlin: Springer International Publishing.

    Book  Google Scholar 

  3. Gibson, D. V., Kozmetsky, G., & Smilor, R. W. (Eds.). (1992). The technopolis phenomenon: Smart cities, fast systems, global networks. New York: Rowman & Littlefield.

    Google Scholar 

  4. Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., & Oliveira, A. (2011). Smart cities and the future internet: Towards cooperation frameworks for open innovation. In J. Domingue et al. (Eds.), The future internet. FIA 2011. Lecture notes in computer science (Vol. 6656). Berlin, Heidelberg: Springer.

    Google Scholar 

  5. Heng, T. M., & Low, L. (1993). The intelligent city: Singapore achieving the next lap: Practitoners forum. Technology Analysis & Strategic Management, 5(2), 187–202.

    Article  Google Scholar 

  6. Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79(1), 1–14.

    Article  Google Scholar 

  7. Kitchin, R. (2015). Making sense of smart cities: Addressing present shortcomings. Cambridge Journal of Regions, Economy and Society, 8(1), 131–136.

    Article  Google Scholar 

  8. Kitchin, R., Lauriault, T. P., & McArdle, G. (2015). Knowing and governing cities through urban indicators, city benchmarking and real-time dashboards. Regional Studies, Regional Science, 2(1), 6–28.

    Article  Google Scholar 

  9. Coletta, C., Heaphy, L., & Kitchin, R. (2017). From accidental to articulated smart city: The creation and work of Smart Dublin. The Programmable City Working Paper 28, socarxiv. Available from https://doi.org/10.1177/0969776418785214.

  10. Cardullo, P., & Kitchin, R. (2018). Being a “citizen” in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal, 1–13. https://doi.org/10.1007/s10708-018-9845-8.

  11. Shelton, T., Zook, M., & Wiig, A. (2015). The ‘actually existing smart city’. Cambridge Journal of Regions, Economy and Society, 8(1), 13–25.

    Article  Google Scholar 

  12. Batty, M. (2017). The age of the smart city. Centre for advanced spatial analysis (CASA) University College London.

    Google Scholar 

  13. Batty, M. (2015). Cities in a completely urbanised world. Environment and Planning B: Planning and Design, 42, 381–383.

    Article  Google Scholar 

  14. Batty, M., Hudson-Smith, A., Hugel, S., & Roumpani, F. (2015). Visualising data for smart cities. In Handbook of research on social, economic, and environmental sustainability in the development of smart cities (Vol. 339). Hershey: IGI Global.

    Google Scholar 

  15. Calzada, I., & Cobo, C. (2015). Unplugging: Deconstructing the smart city. Journal of Urban Technology, 22(1), 23–43.

    Article  Google Scholar 

  16. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences, 104(17), 7301–7306.

    Article  Google Scholar 

  17. Bettencourt, L., & West, G. (2010). A unified theory of urban living. Nature, 467(7318), 912.

    Article  Google Scholar 

  18. DimitrisKaradimas, A. P., Gialelis, J., & Koubias S. (2016). An integrated node for smart-city applications based on active RFID tags; Use case on waste-bins. IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 6–9 Sept. 2016, Berlin, Germany.

    Google Scholar 

  19. Mitchell, W. (2007) ‘Intelligent cities’, Inaugural Lecture of the UOC 2007–2008 Academic Year. Available at http://www.uoc.edu/uocpapers/5/dt/eng/mitchell.html.

  20. Musa S. (2016, January). Smart City Roadmap. [Online]. Available www.academia.edu/21181336/Smart_City_Roadmap.

  21. Building a Smart City (2015), Equitable City–NYC Forward https://www1.nyc.gov/assets/forward/documents/NYC-Smart-Equitable-City-Final.pdf.

  22. Ari-VeikkoAnttiroiko, P. V., & Bailey, S. J. (2014, August). Smart cities in the new service economy: Building platforms for smart services. AI & Society, 29(3), 323–334. https://doi.org/10.1007/s00146-013-0464-0.

    Article  Google Scholar 

  23. Caves, R., & Walshok M. (1997). Transforming regions through information technology developing smart counties in California. Calif County Mag (pp. 29–31).

    Google Scholar 

  24. Caves, R. W. (2004). Responding to the information needs of citizens in an open society: The role of smart communities. eTransformation in governance: New directions in government and politics (pp. 216–233).

    Google Scholar 

  25. Komninos, N. (2002). Intelligent cities: Innovation, knowledge systems and digital spaces. London: Taylor & Francis.

    Google Scholar 

  26. Komakech, D. (2005). Achieving more intelligent cities. Proceedings of the Institution of Civil Engineers-Municipal Engineer (Vol. 158. No. 4), Thomas Telford Ltd.

    Google Scholar 

  27. Carrillo, F. J. (Ed.). (2006). Knowledge cities: Approaches, experiences and perspectives. London: Routledge.

    Google Scholar 

  28. Komninos, N. (2009). Intelligent cities: Towards interactive and global innovation environments. International Journal of Innovation and Regional Development, 1(4), 337–355.

    Article  Google Scholar 

  29. Komninos, N. (2008). Intelligent cities and globalisation of innovation networks. London: Routledge.

    Book  Google Scholar 

  30. Tan, Y. (2015). Smart cities: An effective urban development and management model? Australian Planner, 52(1), 27–34. https://doi.org/10.1080/07293682.2015.1019752.

    Article  Google Scholar 

  31. Lee, S., Yigitcanlar, T., Han, H., & Leem, Y. (2008). Ubiquitous urban infrastructure: Infrastructure planning and development in Korea. Innovation: Management, Policy and Practice, 10, 282–292. https://doi.org/10.5172/impp.453.10.2-3.282.

    Article  Google Scholar 

  32. Yigitcanlar, T., & Lee, S. (2014). Korean ubiquitous-ecocity: A smart-sustainable urban form or a branding hoax? Technological Forecasting and Social Change, 89(1), 100–114. https://doi.org/10.1016/j.techfore.2013.08.034.

    Article  Google Scholar 

  33. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, N., &Meijers, E. (2007). Smart cities—ranking of European medium-sized cities. Final Report, Vienna. Retrieved from: http://www.smart-cities.eu/download/smart_cities_final_report.pdf.

  34. Cohen, B. (2012). What exactly is a Smart City? Fast CoExist. Retrieved Sept 13, 2015 from http://www.fastcoexist.com/1680538/what-exactly-is-a-smart-city.

  35. Vinod Kumar, T. M. (2017). Smart economy in smart cities. Singapore: Springer Nature Singapore Pte Ltd..

    Book  Google Scholar 

  36. Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234–245.

    Article  Google Scholar 

  37. Albino, V., Berardi, U., & Dangelico, R. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22(1), 3–21. https://doi.org/10.1080/10630732.2014.942092.

    Article  Google Scholar 

  38. Lazaroiu, G., & Roscia, M. (2012). Definition methodology for the smart cities model. Energy, 47(1), 326–332.

    Article  Google Scholar 

  39. Lombardi, P., Giordano, S., Farouh, H., & Yousef, W. (2012). Modelling the smart city performance. Innovation: The European Journal of Social Science Research, 25(2), 137–149.

    Google Scholar 

  40. Debnath, A. K., Chin, H. C., Haque, M., & Yuen, B. (2014). A methodological framework for benchmarking smart transport cities. Cities, 37, 47–56. https://doi.org/10.1016/j.cities.2013.11.004.

    Article  Google Scholar 

  41. Garau, C., Masala, F., & Pinna, F. (2015). Benchmarking smart urban mobility: A study of Italian cities. Computational science and its applications—ICCSA 2015 (pp. 612–623). Switzerland: Springer International Publishing.

    Book  Google Scholar 

  42. Hall, P. (1988). Cities of tomorrow. Hoboken: Blackwell Publishers.

    Google Scholar 

  43. World urbanization prospects. The 2014 revision. New York: Department of Economic and Social Affairs. Retrieved January 22, 2017 from http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf.

  44. OECD environmental outlook to 2050. The consequences of inaction. OECD Publishing. Retrieved February 11, 2017. http://www.naturvardsverket.se/upload/miljoarbete-i-samhallet/internationellt-miljoarbete/multilateralt/oecd/outolook-2050-oecd.pdf.

  45. Bulkeley, H., & Betsill, M. M. Rethinking sustainable cities: Multilevel governance and the urban politics of climate change. Environmental Politics, 14(1), 42–63.

    Google Scholar 

  46. Arasteh, H., Hosseinnezhad, V., Loia, V., Tommasetti, A., Troisi, O., Shafie-Khah, M., Siano, P. (2016). IoT-based smart cities: A survey. 16 IEEE International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June, 2016.

    Google Scholar 

  47. Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future Genereration Computing Systems, 56, 684–700.

    Article  Google Scholar 

  48. Yazdani-Damavandi, M., Moghaddam, M. P., Haghifam, M. R., Shafie-khah, M., & Catalão, J. P. S. (2016). Modeling operational behavior ofPlug-in electric vehicles’ parking lot in multienergy systems. IEEE Transactions on Smart Grid, 7, 124–135.

    Article  Google Scholar 

  49. Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2016). Urban planning and building smart cities based on the internet of things using big data analytics (Vol. 101, p. 63). Computer Networks. https://doi.org/10.1016/j.comnet.2015.12.023.

  50. Lasseter, Robert H. (2002). Microgrids. In Power Engineering Society Winter Meeting (Vol. 1, pp. 305–308), IEEE. IEEE.

    Google Scholar 

  51. Amini, M. H., Boroojeni, K. G., Dragičević, T., Nejadpak, A., Iyengar, S. S. & Blaabjerg, F. (2017). A comprehensive cloud-based real-time simulation framework for oblivious power routing in clusters of DC microgrids. In 2017 IEEE Second International Conference on DC Microgrids (ICDCM). IEEE.

    Google Scholar 

  52. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Genereation Computer Systems, 29, 1645–1660.

    Article  Google Scholar 

  53. Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.

    Article  Google Scholar 

  54. Six technologies with potential impacts on us interests out to 2025. Disruptive civil technologies, 2008.

    Google Scholar 

  55. Alamri, A., Ansari, W. S., Hassan, M. M., Hossain, M. S., Alelaiwi, A., & Hossain, M. A. (2013). A survey on sensor-cloud: Architecture, applications, and approaches. International Journal of Distributed Sensor Networks, 2013, 1–18.

    Article  Google Scholar 

  56. Strategic opportunity analysis of the global smart city market. http://www.egr.msu.edu/~aesc310-web/resources/SmartCities/Smart%20City%20Market%20Report%202.pdf.

  57. Jenks, M. (2000). Achieving sustainable urban form. London: Taylor & Francis.

    Google Scholar 

  58. Höjer, M., & Wangel, S. (2015). Smart sustainable cities: Definition and challenges. In L. Hilty & B. Aebischer (Eds.), ICT innovations for sustainability (pp. 333–349). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  59. Komninos, N. (2011, June 30). What makes cities smart? SC Conference, Edinburgh.

    Google Scholar 

  60. Khansari, N., Mostashari, A., & Mansouri, M. (2014). Impacting sustainable behavior and planning in smart city. International Journal of Sustainable Land Use and Urban Planning (IJSLUP), 1(2).

    Google Scholar 

  61. Cutcher-Gershenfeld, J., Field, F., Hall, R., Kirchain, R., Marks, D., Oye, K., et al. (2004). Sustainability as an organizing design principle for large-scale engineering systems. In Engineering systems monograph (pp. 5–42). Cambridge, MA: Massachusetts Institute of Technology.

    Google Scholar 

  62. Oskamp, S. (2000). A sustainable future for humanity? How can psychology help? American Psychologist, 55(5), 496–508.

    Article  Google Scholar 

  63. Vlek, C., & Steg, L. (2007). Human behavior and environmental sustainability: Problems, driving forces, and research topics. Journal of Social Issues, 63(1), 119.

    Article  Google Scholar 

  64. Learning the city: Knowledge and translocal assemblage C McFarlane. (2011). Books. google.com.

  65. Colldahl, C., Frey, S., & Kelemen, J. E. (2013). Smart cities: Strategic sustainable development for an urbanworld. Master Thesis, School of Engineering, Blekinge Institute of Technology.

    Google Scholar 

  66. Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities: Exploring ICT solutionsfor reduced energy use in cities. Environmental Modelling& Software, 56, 52–62.

    Article  Google Scholar 

  67. Shahrokni, H., Årman, L., Lazarevic, D., Nilsson, A., & Brandt, N. (2015). Implementing smart urban metabolism in the Stockholm Royal Seaport: Smart city SRS. Journal of Industrial Ecology, 19(5), 917–929.

    Article  Google Scholar 

  68. Bifulco, F., Tregua, M., Amitrano, C. C., & D'Auria, A. (2016). ICT and sustainability in smart cities management. International Journal of Public Sector Management, 29(2), 132–147.

    Article  Google Scholar 

  69. Keirstead, J., & Leach, M. (2007). Bridging the gaps between theory and practice: A service niche approach to urban sustainability indicators. Sustainable Development. http://www3.interscience.wiley.com/journal/116836988/abstract.

  70. Curwell, S., & Cooper, I. (1998). The implications of urban sustainability. Building Research and Information, 26(1), 17–28.

    Article  Google Scholar 

  71. Madden, P., Weißbrod, I. (2008, April). Connected ICT and sustainable development. At Forum for the Future.

    Google Scholar 

  72. New Scientist. (2006, February 25). Watering crops in the wireless age. See also http://nicta.com.au/.f.

  73. Kyriazis, D., Varvarigou, T., Rossi, A., White, D., & Cooper, J. (2013). Sustainable smart city IoT applications: Heat and electricity management & Eco-conscious cruise control for public transportation. In 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), https://doi.org/10.1109/WoWMoM.2013.6583500

  74. Badii, C., Bellini, P., Cenni, D., Difino, A., Nesi, P., & Paolucci, M. (2017). Analysis and assessment of a knowledge based smart city architecture providing service APIs. Future Generation Computer Systems, 75, 14–29.

    Article  Google Scholar 

  75. Wenge, R., Zhang, X., Dave, C., Chao, L., & Hao, S. (2014, March). Smart city architecture: A technology guide for implementation and design challenges. China Communications, 11(3).

    Google Scholar 

  76. Al-Hader, M., Rodzi, A., Sharif, A. R., & Ahmad, N. (2009). Smart city components architecture. International Conference on Computational Intelligence, Modelling and Simulation, 7–9 Sept. 2009, Brno, Czech Republic, Czech Republic.

    Google Scholar 

  77. Anthopoulos, L., & Fitsilis, P. (2010). From digital to ubiquitous cities: Defining a common architecture for urban development, 6th International Conference on Intelligent Environments. June 19–21. Kuala Lumpur, Malaysia. 2010 (pp. 301–306).

    Google Scholar 

  78. Krylovskiy, A., Jahn, M., & Patti, E. (2015, August). Designing a smart city internet of things platform with microservice architecture. In 2015 3rd International Conference on Future Internet of Things and Cloud (FiCloud) (pp. 25–30). IEEE.

    Google Scholar 

  79. Liu, X., Wang, X., Wright, G., Cheng, J. C., Li, X., & Liu, R. (2017). A state-of-the-art review on the integration of building information modeling (BIM) and geographic information system (GIS). ISPRS International Journal of Geo-Information, 6(2), 53.

    Article  Google Scholar 

  80. Tan, Y., Song, Y., Liu, X., Wang, X., & Cheng, J. C. P. (2017). A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms. Automation in Construction, 79, 19–30.

    Article  Google Scholar 

  81. Soto, J. Á. C., Werner-Kytölä, O., Jahn, M., Pullmann, J., Bonino, D., Pastrone, C., et al. (2016, January). Towards a federation of smart city services. In Proceeding of International Conference on Recent Advances in Computer Systems.

    Google Scholar 

  82. Lohan, E. S., Kauppinen, T., & Debnath, S. B. C. (2016, November). A survey of people movement analytics studies in the context of smart cities. In 2016 19th Conference of Open Innovations Association (FRUCT) (pp. 151–158). IEEE.

    Google Scholar 

  83. Volk, R., Stengel, J., & Schultmann, F. (2014). Building information modeling (BIM) for existing buildings—Literature review and future needs. Automation in Construction, 38, 109–127.

    Article  Google Scholar 

  84. Zdraveski, V., Mishev, K., Trajanov, D., & Kocarev, L. (2017, April–June). ISO-standardized smart city platform architecture and dashboard. IEEE Pervasive Computing, 16(2), 35–43.

    Article  Google Scholar 

  85. Zhang, K., Ni J., Yang K., Liang X., Ren J., & Shen X. S. (2017, January). Security and privacy in smart city applications: Challenges and solutions. IEEE Communications Magazine.

    Google Scholar 

  86. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

    Article  Google Scholar 

  87. Karnouskos, S., & De Holanda, T. N. (2009). Simulation of a smart grid city with software agents. Third UKSim European Symposium on Computer Modeling and Simulation, 2009. EMS’09. IEEE, 2009.

    Google Scholar 

  88. Morvaj, B., L. Lugaric, & S. Krajcar. Demonstrating smart buildings and smart grid features in a smart energy city. (2011). Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE). IEEE, 2011.

    Google Scholar 

  89. Amini, M. H., Frye, J., Ilić, M. D., & Karabasoglu, O. (2015). Smart residential energy scheduling utilizing two stage mixed integer linear programming. In North American Power Symposium (NAPS), 2015 (pp. 1–6). IEEE.

    Google Scholar 

  90. Siano, P. (2014). Demand response and smart grids—A survey. Renewable and Sustainable Energy Reviews, 30, 461–478.

    Article  Google Scholar 

  91. Mohsenian-Rad, A.-H., Wong, V. W. S., Jatskevich, J., Schober, R., & Leon-Garcia, A. (2010). Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Transactions on Smart Grid, 1(3), 320–331.

    Article  Google Scholar 

  92. Mohammadi, A., Dehghani, M. J., & Ghazizadeh, E. (2018). Game theoretic spectrum allocation in femtocell networks for smart electric distribution grids. Energies, 11(7), 1–18.

    Article  Google Scholar 

  93. Nguyen, H. K., Song, J. B., & Han, Z. (2012). Demand side management to reduce peak-to-average ratio using game theory in smart grid. In Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE.

    Google Scholar 

  94. Zhang, K., Lu, R., Liang, X., Qiao, J., & Shen, X. S. (2013). PARK: A privacy-preserving aggregation scheme with adaptive key management for smart grid. In International Conference on Communications in China (ICCC) (pp. 236–241).

    Google Scholar 

  95. Li, X., Lu, R., Liang, X., Shen, X., Chen, J., & Lin, X. (2011, November). Smart community: An internet of things application. IEEE Communications Magazine, 49(11), 68–75.

    Article  Google Scholar 

  96. Zhang, K., Yang, K., Liang, X., Su, Z., Shen, X., & Luo, H. H. (2015, August). Security and privacy for mobile healthcare networks—From quality of protection perspective. IEEE Wireless Communications, 22(4), 104–112.

    Article  Google Scholar 

  97. Neirotti, P., Marco, A. D., Cagliano, A. C., Mangano, G., & Scorrano, F. (2014). Current trends in smart city initiatives: Some stylised facts. Cities, 38, 25–36.

    Article  Google Scholar 

  98. Ni, J., Lin, X., Zhang, K., & Shen, X. (2016). Privacy-preserving real-time navigation system using vehicular crowd-sourcing. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1–5).

    Google Scholar 

  99. Clough, B. A., & Casey, L. M. (2015). The smart therapist: A look to the future of smartphones and mHealth technologies in psychotherapy. Professional Psychology: Research and Practice, 46(3), 147.

    Article  Google Scholar 

  100. Amini, M. H., & Islam, A. (2014). Allocation of electric vehicles’ parking lots in distribution network. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. IEEE, 2014.

    Google Scholar 

  101. Amini, M. H., Karabasoglu, O., Ilić, M. D., Boroojeni, K. G., & Iyengar, S. S. (2015). ARIMA-based demand forecasting method considering probabilistic model of electric vehicles’ parking lots. In Power & Energy Society General Meeting, 2015, IEEE (pp. 1–5). IEEE.

    Google Scholar 

  102. Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140, 378–390.

    Article  Google Scholar 

  103. Amini, M. H., Boroojeni, K. G., Wang, C. J., Nejadpak, A., Iyengar, S. S., & Karabasoglu, O. (2016). Effect of electric vehicle parking lots’ charging demand as dispatchable loads on power systems loss. In 2016 IEEE International Conference on Electro Information Technology (EIT) (pp. 0499–0503). IEEE.

    Google Scholar 

  104. Amini, M. H., & Karabasoglu, O. (2017). Optimal operation of interdependent power systems and electrified transportation networks. arXiv preprint arXiv:1701.03487.

    Google Scholar 

  105. Amini, M. H., Nabi, B., Moghaddam, M. P., & Mortazavi, S. A. (2012). Evaluating the effect of demand response programs and fuel cost on PHEV owners behavior, a mathematical approach. In 2012 2nd Iranian Conference on Smart Grids (ICSG). IEEE.

    Google Scholar 

  106. Viswanath, A., & Farid, A. M. (2014). A hybrid dynamic system model for the assessment of transportation electrification. American Control Conference (ACC). IEEE, 2014.

    Google Scholar 

  107. Mozafar, M. R., Moradi, M. H., & Amini, M. H. A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm.

    Google Scholar 

  108. Amini, M. H., Moghaddam, M. P., & Karabasoglu, O. (2017). Simultaneous allocation of electric vehicles’ parking lots and distributed renewable resources in smart power distribution networks. Sustainable Cities and Society, 28, 332–342.

    Article  Google Scholar 

  109. Mistani, P., Guittet, A., Bochkov, D., Schneider, J., Margetis, D., Ratsch, C., et al. (2018). The island dynamics model on parallel quadtree grids. Journal of Computational Physics, 361, 150–166.

    Article  MathSciNet  MATH  Google Scholar 

  110. Kamienski, C. A., Borelli, F. F., Biondi, G. O., Pinheiro, I., Zyrianoff, I. D., & Jentsch, M. (2017). Context design and tracking for IoT-based energy management in smart cities. IEEE Internet of Things Journal, 5(2), 687–695.

    Article  Google Scholar 

  111. Morello, R., Mukhopadhyay, S. C., Liu, Z., Slomovitz, D., & Samantaray, S. R. (2017). Advances on sensing technologies for smart cities and power grids: A review. IEEE Sensors Journal, 17(23), 7596–7610.

    Google Scholar 

  112. Cerna, F. V., Pourakbari-Kasmaei, M., Romero, R. A., & Rider, M. J. (2017). Optimal delivery scheduling and charging of EVs in the navigation of a city map. IEEE Transactions on Smart Grid, 9(5), 4815–4827.

    Article  Google Scholar 

  113. Amini, M. H., McNamara, P., Weng, P., Karabasoglu, O., & Xu, Y. (2017). Hierarchical electric vehicle charging aggregator strategy using Dantzig-Wolfe decomposition. IEEE Design & Test Magazine. https://doi.org/10.1109/MDAT.2017.2759505.

  114. Mazza, D., Pagès-Bernaus, A., Tarchi, D., Juan, A. A., & Corazza, G. E. (2018). Supporting mobile cloud computing in smart cities via randomized algorithms. IEEE Systems Journal, 12(2), 1598–1609.

    Article  Google Scholar 

  115. Ota, K., Kumrai, T., Dong, M., Kishigami, J., & Guo, M. (2017) Smart infrastructure design for Smart Cities, IT Professional (Early Access), https://doi.org/10.1109/ MITP.2017.265110715.

    Google Scholar 

  116. Gholami, A., Shekari, T., Amirioun, M. H., Aminifar, F., Amini, M. H., & Sargozalei, A. (2018). Toward a consensus on the definition and taxonomy of power system resilience. IEEE Access, 6, 32035–32053.

    Article  Google Scholar 

  117. Boroojeni, K. G., Amini, M. H., & Iyengar, S. S. (2017). Overview of the security and privacy issues in smart grids. In Smart grids: Security and privacy issues (pp. 1–16). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  118. Martinez-Balleste, A., Perez-Martinez, P., & Solanas, A. (2013, June). The pursuit of citizens’ privacy: A privacy-aware smart city is possible. IEEE Communications Magazine, 51(6), 136–141.

    Article  Google Scholar 

  119. Elmaghraby, A. S., & Losavio, M. (2014). Cyber security challenges in smart cities: Safety, security and privacy. Journal of Advanced Research, 5(4), 491–497.

    Article  Google Scholar 

  120. Weber, R. H. (2010). Internet of things—New security and privacy challenges. Computer Law and Security Review, 26(1), 23–30.

    Article  MathSciNet  Google Scholar 

  121. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter cities and their innovation challenges. IEEE Computer, 44(6), 32–39.

    Article  Google Scholar 

  122. Roman, R., Zhou, J., & Lopez, J. (2013). On the features and challenges of security and privacy in distributed internet of things. Computer Networks, 57(10), 2266–2279.

    Article  Google Scholar 

  123. Akhunzada, A., Ahmed, E., Gani, A., Khan, M. K., Imran, M., & Guizani, S. (2015, April). Securing software defined networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 53(4), 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hadi Amini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amini, M.H., Arasteh, H., Siano, P. (2019). Sustainable Smart Cities Through the Lens of Complex Interdependent Infrastructures: Panorama and State-of-the-art. In: Amini, M., Boroojeni, K., Iyengar, S., Pardalos, P., Blaabjerg, F., Madni, A. (eds) Sustainable Interdependent Networks II. Studies in Systems, Decision and Control, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-319-98923-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98923-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98922-8

  • Online ISBN: 978-3-319-98923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics