Skip to main content

A System of Systems Engineering Framework for Modern Power System Operation

  • Chapter
  • First Online:
Sustainable Interdependent Networks II

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 186))

Abstract

In the literature, numerous definitions have been proposed for system of systems (SoS). The concept of system of systems has been widely used in defense applications. In addition, it has been applied to other domains, e.g., healthcare, robotics, global communication systems, transportation, space exploration, and power system operation.

In this chapter, we discuss about the possibility of modeling active distribution grids (ADGs), which are composed of several microgrids, based on the concept of system of systems. Although various energy management/control functions, such as long-term planning and day-ahead scheduling, can be investigated based on the concept of SoS, the main focus of this chapter is on the short-term ADG operation and the optimal power flow (OPF) problem. The whole ADG is considered to be an SoS in which distribution system operators (DSOs) and microgrids (MGs), which are autonomous entities, are modeled as self-governing systems. The information privacy of DSOs and MGs is explained, and a local OPF is formulated for each system taking into account the mutual interactions between DSOs and MGs. A distributed optimization algorithm, which is based on the augmented Lagrangian relaxation, is presented to find the optimal operating point of ADG while respecting information privacy of the subsystems. A test system is designed to provide a tutorial for readers on how to formulate local OPF problems of ADGs and MGs and how to implement the distributed optimization algorithm.

This work was supported in part by the Louisiana Board of Regents under Grant LEQSF(2016-19)-RD-A-10 and the National Science Foundation under Grant ECCS-1711850.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Index for autonomous systems

b, b :

Border buses between two neighboring systems

i, j :

Index for buses

k :

Index for outer loop iterations

l :

Index for levels in the hierarchical structure

m, n :

Index for subproblems

q :

Index for inner loop iterations

u :

Index for generating units

Ω i :

Set of all buses connected to bus i

\( {\varOmega}_L^n \) :

Set of all branches in system n

\( {\varOmega}_G^n \) :

Set of all generating units located in system n

\( {N}_B^n \) :

Number of buses in system n

d i :

Power demand at bus i

p u :

Power generated by unit u

PL ij :

Power flow in line ij

Ɵ :

Bus voltage angles

f n(·):

Local objective function of system n

f(p u):

Generation cost function of unit u

f la(·):

Local objective function of system a at level l

g n(·):

Compact form of inequality constraints of system n

h n(·):

Compact form of equality constraints of system n

g la(·):

Set of local inequality constraints of system a at level l

h la(·):

Set of local equality constraints of system a at level l

θ b :

Voltage angle of bus b

θ b, m :

Voltage angle of bus b determined by system m

θ b, n :

Voltage angle of bus b determined by system n

\( {\theta}_{2a}^{\ast } \) :

Target values that are constants in microgrids’ optimization

\( {\theta}_{2a}^{\prime \ast } \) :

Response values that are constants in DSO’s optimization

x n :

Local variables of system n

\( {\overset{\sim }{x}}_{la} \) :

Set of local variables of system a at level l

t 2 a :

Target variables of system a at level 2

r 2 a :

Response variables of system a at level 2

\( \overline{P_u} \) :

Upper bound for generating unit u

\( \underset{\_}{P_u} \) :

Lower bound for generating unit u

\( \overline{PL_{ij}} \) :

Upper bound for power flow in line ij

\( \underset{\_}{PL_{ij}} \) :

Lower bound for power flow in line ij

π(·):

Penalty function

λ T :

Lagrange multiplier

ω :

Penalty multiplier

β :

Step size

References

  1. Idema, R., & Lahaye, D. J. (2014). Computational methods in power system analysis. New York: Springer.

    Book  Google Scholar 

  2. Wood, A. J., & Wollenberg, B. F. (2012). Power generation, operation, and control. New York: John Wiley & Sons.

    Google Scholar 

  3. Amini, M. H., Boroojeni, K. G., Iyengar, S. S., Pardalos, P. M., Blaabjerg, F., & Madni, A. M. (2018). Sustainable interdependent networks: From theory to application. Cham: Springer.

    Book  Google Scholar 

  4. Amini, M. H., Boroojeni, K. G., Iyengar, S., Blaabjerg, F., Pardalos, P. M., & Madni, A. M. (2018). A panorama of future interdependent networks: From intelligent infrastructures to smart cities. In Sustainable interdependent networks (pp. 1–10). Cham: Springer.

    Chapter  Google Scholar 

  5. Kargarian, A., Mohammadi, J., Guo, J., Chakrabarti, S., Barati, M., Hug, G., et al. (2016). Toward distributed/decentralized DC optimal power flow implementation in future electric power systems. IEEE Transactions on Smart Grid, 3, 1249–1258.

    Google Scholar 

  6. Molzahn, D. K., Dörfler, F., Sandberg, H., Low, S. H., Chakrabarti, S., Baldick, R., et al. (2017). A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grid, 8, 2941.

    Article  Google Scholar 

  7. Wang, Y., Wang, S., & Wu, L. (2017). Distributed optimization approaches for emerging power systems operation: A review. Electric Power Systems Research, 144, 127–135.

    Article  Google Scholar 

  8. Marvasti, A. K., Fu, Y., DorMohammadi, S., & Rais-Rohani, M. (2014). Optimal operation of active distribution grids: A system of systems framework. IEEE Transactions on Smart Grid, 5, 1228–1237.

    Article  Google Scholar 

  9. Conejo, A. J., Nogales, F. J., & Prieto, F. J. (2002). A decomposition procedure based on approximate Newton directions. Mathematical Programming, 93, 495–515.

    Article  MathSciNet  Google Scholar 

  10. Kar, S., Hug, G., Mohammadi, J., & Moura, J. M. (2014). Distributed state estimation and energy management in smart grids: A consensus + innovations approach. IEEE Journal of Selected Topics in Signal Processing, 8, 1022–1038.

    Article  Google Scholar 

  11. Kotov, V. (1997). Systems of systems as communicating structures. Hewlett Packard Laboratories.

    Google Scholar 

  12. Lukasik, S. J. (1998). Systems, systems of systems, and the education of engineers. AI EDAM, 12, 55–60.

    Article  Google Scholar 

  13. Pei, R. S. (2000). System of Systems Integration (SoSI)-A “SMART” Way of Acquiring Army C412WS Systems. In Summer Computer Simulation Conference (pp. 574–579).

    Google Scholar 

  14. Carlock, P. G., & Fenton, R. E. (2001). System of Systems (SoS) enterprise systems engineering for information-intensive organizations. Systems Engineering, 4, 242–261.

    Article  Google Scholar 

  15. Sage, A. P., & Cuppan, C. D. (2001). On the systems engineering and management of systems of systems and federations of systems. Information Knowledge Systems Management, 2, 325–345.

    Google Scholar 

  16. Jamshidi, M. (2011). System of systems engineering: innovations for the twenty-first century (Vol. 58). New York: John Wiley & Sons.

    Google Scholar 

  17. Marvasti, A. K. (2014). System of systems based decision-making for power systems operation. Mississippi: Mississippi State University.

    Google Scholar 

  18. Kargarian, A., Falahati, B., & Fu, Y. (2013). Optimal operation of distribution grids: A system of systems framework. In Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES (pp. 1–6).

    Google Scholar 

  19. Kargarian, A., Fu, Y., Liu, P., & Wang, C. (2014). A system of systems engineering approach for unit commitment in multi-area power markets. In PES General Meeting| Conference & Exposition, 2014 IEEE (pp. 1–5).

    Google Scholar 

  20. Kargarian, A., & Fu, Y. (2014). System of systems based security-constrained unit commitment incorporating active distribution grids. IEEE Transactions on Power Systems, 29, 2489–2498.

    Article  Google Scholar 

  21. Mehrtash, M., Raoofat, M., Mohammadi, M., & Zareipour, H. (2016). Fast stochastic security-constrained unit commitment using point estimation method. International Transactions on Electrical Energy Systems, 26, 671–688.

    Article  Google Scholar 

  22. Kargarian, A., Fu, Y., & Wu, H. (2016). Chance-constrained system of systems based operation of power systems. IEEE Transactions on Power Systems, 31, 3404–3413.

    Article  Google Scholar 

  23. Sage, A. P. (2003). Conflict and risk management in complex system of systems issues. In Systems, man and cybernetics. IEEE International Conference on, 2003 (pp. 3296–3301).

    Google Scholar 

  24. Parks, R. C., Jung, R. A., & Ramotowski, K. O. (2004) Attacking agent-based systems. In Multi-Agent Security and Survivability, 2004 IEEE First Symposium on, 2004 (pp. 31–34).

    Google Scholar 

  25. Monarch, I., & Wessel, J. (2005). Autonomy and interoperability in system of systems requirements development. In 16th IEEE International Symposium on Software Reliability Engineering, Chicago, IL

    Google Scholar 

  26. Chowdhury, S., & Crossley, P. (2009). Microgrids and active distribution networks. London: The Institution of Engineering and Technology.

    Book  Google Scholar 

  27. Lasseter, R. H. (2002). Microgrids. In Power Engineering Society Winter Meeting, 2002. IEEE (pp. 305–308).

    Google Scholar 

  28. Bollen, M. H., & Hassan, F. (2011). Integration of distributed generation in the power system (Vol. 80). New York: John Wiley & Sons.

    Book  Google Scholar 

  29. Bayod-Rújula, A. A. (2009). Future development of the electricity systems with distributed generation. Energy, 34, 377–383.

    Article  Google Scholar 

  30. Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research, 77, 1189–1203.

    Article  Google Scholar 

  31. Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., & D’haeseleer, W. (2005). Distributed generation: Definition, benefits and issues. Energy Policy, 33, 787–798.

    Article  Google Scholar 

  32. Khodaei, A., & Shahidehpour, M. (2013). Microgrid-based co-optimization of generation and transmission planning in power systems. IEEE Transactions on Power Systems, 28, 1582–1590.

    Article  Google Scholar 

  33. Algarni, A. A., & Bhattacharya, K. (2009). Disco operation considering DG units and their goodness factors. IEEE Transactions on Power Systems, 24, 1831–1840.

    Article  Google Scholar 

  34. Soroudi, A., Ehsan, M., Caire, R., & Hadjsaid, N. (2011). Possibilistic evaluation of distributed generations impacts on distribution networks. IEEE Transactions on Power Systems, 26, 2293–2301.

    Article  Google Scholar 

  35. Borghetti, A., Bosetti, M., Grillo, S., Massucco, S., Nucci, C. A., Paolone, M., et al. (2010). Short-term scheduling and control of active distribution systems with high penetration of renewable resources. IEEE Systems Journal, 4, 313–322.

    Article  Google Scholar 

  36. Ahn, S.-J., Nam, S.-R., Choi, J.-H., & Moon, S.-I. (2013). Power scheduling of distributed generators for economic and stable operation of a microgrid. IEEE Transactions on Smart Grid, 4, 398–405.

    Article  Google Scholar 

  37. Logenthiran, T., Srinivasan, D., Khambadkone, A. M., & Aung, H. N. (2012). Multiagent system for real-time operation of a microgrid in real-time digital simulator. IEEE Transactions on Smart Grid, 3, 925–933.

    Article  Google Scholar 

  38. Safdarian, F., Ardehali, M., & Gharehpetian, G. (2014). Ramp rate effect on maximizing profit of a microgrid using gravitational search algorithm. In Proceedings of The 2014 IAJC-ISAM International Conference.

    Google Scholar 

  39. Bagherian, A., & Tafreshi, S. M. (2009). A developed energy management system for a microgrid in the competitive electricity market. In PowerTech, 2009 IEEE Bucharest (pp. 1–6).

    Google Scholar 

  40. Mohammadi, M., Hosseinian, S., & Gharehpetian, G. (2012). GA-based optimal sizing of microgrid and DG units under pool and hybrid electricity markets. International Journal of Electrical Power & Energy Systems, 35, 83–92.

    Article  Google Scholar 

  41. Braun, M., & Strauss, P. (2008). A review on aggregation approaches of controllable distributed energy units in electrical power systems. International Journal of Distributed Energy Resources, 4, 297–319.

    Google Scholar 

  42. Amini, M. H., Jaddivada, R., Mishra, S., & Karabasoglu, O. (2015). Distributed security constrained economic dispatch. In Innovative Smart Grid Technologies-Asia (ISGT ASIA), 2015 IEEE (pp. 1–6).

    Google Scholar 

  43. Mohammadi, J., Kar, S., & Hug, G. (2017). Fully distributed corrective security constrained optimal power flow. In PowerTech, 2017 IEEE Manchester (pp. 1–6).

    Google Scholar 

  44. Amini, M. H., Nabi, B., & Haghifam, M. -R. (2013). Load management using multi-agent systems in smart distribution network. In Power and Energy Society General Meeting (PES), 2013 IEEE (pp. 1–5).

    Google Scholar 

  45. Mohammadi, J., Hug, G., & Kar, S. (2018). Agent-based distributed security constrained optimal power flow. IEEE Transactions on Smart Grid, 9(2), 1118–1130.

    Article  Google Scholar 

  46. Mohammadi, A., Mehrtash, M., & Kargarian, A. (2018). Diagonal quadratic approximation for decentralized collaborative TSO + DSO optimal power flow. IEEE Transactions on Smart Grid, 1. https://doi.org/10.1109/TSG.2018.2796034, 1.

  47. Kargarian, A., Mehrtash, M., & Falahati, B. (2017). Decentralized implementation of unit commitment with analytical target cascading: A parallel approach. IEEE Transactions on Power Systems, 1, 1.

    Google Scholar 

  48. Safdarian, F., Ciftci, O., & Kargarian, A. (2018). A time decomposition and coordination strategy for power system multi-interval operation. Presented at the IEEE Power and Energy Society General Meeting, Portland, OR.

    Google Scholar 

  49. Mohammadi, A., Mehrtash, M., Kargarian, A., & Barati, M., Tie-line characteristics based partitioning for distributed optimization of power systems. IEEE Power and Energy Society General Meeting, Portland, OR.

    Google Scholar 

  50. Amini, M. H., Boroojeni, K. G., Dragičević, T., Nejadpak, A., Iyengar, S., & Blaabjerg, F. (2017). A comprehensive cloud-based real-time simulation framework for oblivious power routing in clusters of DC microgrids. In DC Microgrids (ICDCM), 2017 IEEE Second International Conference on, 2017 (pp. 270–273).

    Google Scholar 

  51. Kim, H. M., Kokkolaras, M., Louca, L. S., Delagrammatikas, G. J., Michelena, N. F., Filipi, Z. S., et al. (2002). Target cascading in vehicle redesign: A class VI truck study. International Journal of Vehicle Design, 29, 199–225.

    Article  Google Scholar 

  52. Allison, J., Walsh, D., Kokkolaras, M., Papalambros, P., & Cartmell, M. (2006). Analytical target cascading in aircraft design. 44th AIAA aerospace sciences meeting and exhibit (pp. 9–12).

    Google Scholar 

  53. Michalek, J. J., Feinberg, F. M., & Papalambros, P. Y. (2005). Linking marketing and engineering product design decisions via analytical target cascading. Journal of Product Innovation Management, 22, 42–62.

    Article  Google Scholar 

  54. Chen, C., He, B., Ye, Y., & Yuan, X. (2016). The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 155, 57–79.

    Article  MathSciNet  Google Scholar 

  55. Kargarian, A., Fu, Y., & Li, Z. (2015). Distributed security-constrained unit commitment for large-scale power systems. IEEE Transactions on Power Systems, 30, 1925–1936.

    Article  Google Scholar 

  56. Cohen, G. (1980). Auxiliary problem principle and decomposition of optimization problems. Journal of Optimization Theory and Applications, 32, 277–305.

    Article  MathSciNet  Google Scholar 

  57. Hug-Glanzmann, G., & Andersson, G. (2009). Decentralized optimal power flow control for overlapping areas in power systems. IEEE Transactions on Power Systems, 24, 327–336.

    Article  Google Scholar 

  58. Michelena, N., Park, H., & Papalambros, P. Y. (2003). Convergence properties of analytical target cascading. AIAA Journal, 41, 897–905.

    Article  Google Scholar 

  59. DorMohammadi, S., & Rais-Rohani, M. (2013). Exponential penalty function formulation for multilevel optimization using the analytical target cascading framework. Structural and Multidisciplinary Optimization, 47, 599–612.

    Article  MathSciNet  Google Scholar 

  60. Tosserams, S., Etman, L., Papalambros, P., & Rooda, J. (2006). An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Structural and Multidisciplinary Optimization, 31, 176–189.

    Article  MathSciNet  Google Scholar 

  61. Li, Y., Lu, Z., & Michalek, J. J. (2008). Diagonal quadratic approximation for parallelization of analytical target cascading. Journal of Mechanical Design, 130, 051402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Kargarian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadi, A., Safdarian, F., Mehrtash, M., Kargarian, A. (2019). A System of Systems Engineering Framework for Modern Power System Operation. In: Amini, M., Boroojeni, K., Iyengar, S., Pardalos, P., Blaabjerg, F., Madni, A. (eds) Sustainable Interdependent Networks II. Studies in Systems, Decision and Control, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-319-98923-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98923-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98922-8

  • Online ISBN: 978-3-319-98923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics