Skip to main content

Shoulder Biomechanics

  • Chapter
  • First Online:
The Shoulder Made Easy

Abstract

This chapter discusses the biomechanics of shoulder motion as well as shoulder stability, with particular emphasis on the clinical relevance of the various concepts described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halder AM, Itoi E, An KN. Anatomy and biomechanics of the shoulder. Orthop Clin North Am. 2000;31(2):159–76.

    Article  CAS  Google Scholar 

  2. An KN, Browne AO, Korinek S, Tanaka S, Morrey BF. Three-dimensional kinematics of glenohumeral elevation. J Orthop Res. 1991;9(1):143–9.

    Article  CAS  Google Scholar 

  3. Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports. 2011;21(3):352–8.

    Article  CAS  Google Scholar 

  4. McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elb Surg. 2001;10:269–77.

    Article  CAS  Google Scholar 

  5. Inman VT, Abbot L, Saunders JB. Observations on the function of the shoulder joint. J Bone Joint Surg. 1944;26(1):1–30.

    Google Scholar 

  6. Poppen NK, Walker PS. Normal and abnormal motion of the shoulder. J Bone Joint Surg Am. 1976;58:195–201.

    Article  CAS  Google Scholar 

  7. Bagg SD, Forrest WJ. A biomechanical analysis of scapular rotation during arm abduction in the scapular plane. Am J Phys Med Rehabil. 1988;67:238–45.

    CAS  PubMed  Google Scholar 

  8. Flatow EL. The biomechanics of the acromioclavicular, sternoclavicular, and scapulothoracic joints. Instr Course Lect. 1993;42:237–45.

    CAS  PubMed  Google Scholar 

  9. Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91(2):378–89.

    Article  Google Scholar 

  10. Teece RM, Lunden JB, Lloyd AS, Kaiser AP, Cieminski CJ, Ludewig PM. Three-dimensional acromioclavicular joint motions during elevation of the arm. J Orthop Sports Phys Ther. 2008;38(4):181–90.

    Article  Google Scholar 

  11. Greene WB, Heckman JD. The clinical measurement of joint motion. In: Rosemont IL, editor. American Academy of Orthopaedic Surgeons. 1st ed. Rosemont: American Academy of Orthopaedic Surgeons; 1994. p. 15–26.

    Google Scholar 

  12. Namdari S, Yagnik G, Ebaugh DD, Nagda S, Ramsey ML, Williams GR Jr, Mehta S. Defining functional shoulder range of motion for activities of daily living. J Shoulder Elb Surg. 2012;21(9):1177–83.

    Article  Google Scholar 

  13. Bitter NL, Clisby EF, Jones MA, Magarey ME, Jaberzadeh S, Sandow MJ. Relative contributions of infraspinatus and deltoid during external rotation in healthy shoulders. J Shoulder Elb Surg. 2007;16(5):563–8.

    Article  Google Scholar 

  14. Alizadehkhaiyat O, Hawkes DH, Kemp GJ, Frostick SP. Electromyographic Analysis of the Shoulder Girdle Musculature During External Rotation Exercises. Orthop J Sports Med. 2015;3(11):2325967115613988. https://doi.org/10.1177/2325967115613988.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Culham E, Peat M. Functional anatomy of the shoulder complex. J Orthop Sports Phys Ther. 1993;18(1):342–50.

    Article  CAS  Google Scholar 

  16. Sinnatamby CS. FRCS Last’s Anatomy: Regional and Applied. London: Churchill Livingstone Elsevier; 2011. p. 12e.

    Google Scholar 

  17. Kronberg M, Németh G, Broström LA. Muscle activity and coordination in the normal shoulder. An electromyographic study. Clin Orthop Relat Res. 1990;257:76–85.

    Google Scholar 

  18. Werthel JD, Bertelli J, Elhassan BT. Shoulder function in patients with deltoid paralysis and intact rotator cuff. Orthop Traumatol Surg Res. 2017;103(6):869–73.

    Article  Google Scholar 

  19. Reed D, Cathers I, Halaki M, Ginn K. Does supraspinatus initiate shoulder abduction? J Electromyogr Kinesiol. 2013;23(2):425–9.

    Article  Google Scholar 

  20. Howell SM, Imobersteg AM, Seger DH, Marone PJ. Clarification of the role of the supraspinatus muscle in shoulder function. J Bone Joint Surg Am. 1986;68(3):398–404.

    Article  CAS  Google Scholar 

  21. Liu J, Hughes RE, Smutz WP, Niebur G, Nan-An K. Roles of deltoid and rotator cuff muscles in shoulder elevation. Clin Biomech (Bristol, Avon). 1997;12(1):32–8.

    Article  CAS  Google Scholar 

  22. Wickham J, Pizzari T, Stansfeld K, Burnside A, Watson L. Quantifying ‘normal’ shoulder muscle activity during abduction. J Electromyogr Kinesiol. 2010;20(2):212–22.

    Article  Google Scholar 

  23. Poppen NK, Walker PS. Forces at the glenohumeral joint in abduction. Clin Orthop Relat Res. 1978;135:165–70.

    Google Scholar 

  24. McMahon PJ, Debski RE, Thompson WO, Warner JJ, Fu FH, Woo SL. Shoulder muscle forces and tendon excursions during glenohumeral abduction in the scapular plane. J Shoulder Elb Surg. 1995;4(3):199–208.

    Article  CAS  Google Scholar 

  25. Apreleva M, Parsons IM 4th, Warner JJ, Fu FH, Woo SL. Experimental investigation of reaction forces at the glenohumeral joint during active abduction. J Shoulder Elb Surg. 2000;9(5):409–17.

    Article  CAS  Google Scholar 

  26. Halder AM, Zhao KD, Odriscoll SW, Morrey BF, An KN. Dynamic contributions to superior shoulder stability. J Orthop Res. 2001;19(2):206–12.

    Article  CAS  Google Scholar 

  27. Pouliart N, Gagey O. The effect of isolated labrum resection on shoulder stability. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):301–8.

    Article  Google Scholar 

  28. Lee SB, Kim KJ, O’Driscoll SW, Morrey BF, An KN. Dynamic glenohumeral stability provided by the rotator cuff muscles in the mid-range and end-range of motion. A study in cadavera. J Bone Joint Surg Am. 2000;82(6):849–57.

    Article  CAS  Google Scholar 

  29. Wuelker N, Korell M, Thren K. Dynamic glenohumeral joint stability. J Shoulder Elb Surg. 1998;7(1):43–52.

    Article  CAS  Google Scholar 

  30. Ernstbrunner L, Werthel JD, Hatta T, Thoreson AR, Resch H, An KN, Moroder P. Biomechanical analysis of the effect of congruence, depth and radius on the stability ratio of a simplistic ‘ball-and-socket’ joint model. Bone Joint Res. 2016;5(10):453–60.

    Article  CAS  Google Scholar 

  31. An KN. Muscle force and its role in joint dynamic stability. Clin Orthop Relat Res. 2002;403(Suppl):S37–42.

    Article  Google Scholar 

  32. Lee SB, An KN. Dynamic glenohumeral stability provided by three heads of the deltoid muscle. Clin Orthop Relat Res. 2002;400:40–7.

    Article  Google Scholar 

  33. Motzkin NE, Itoi E, Morrey BF, An KN. Contribution of capsuloligamentous structures to passive static inferior glenohumeral stability. Clin Biomech (Bristol, Avon). 1998;13(1):54–6.

    Article  Google Scholar 

  34. Halder AM, Halder CG, Zhao KD, O’Driscoll SW, Morrey BF, An KN. Dynamic inferior stabilizers of the shoulder joint. Clin Biomech (Bristol, Avon). 2001;16(2):138–43.

    Article  CAS  Google Scholar 

  35. Itoi E, Berglund LJ, Grabowski JJ, Naggar L, Morrey BF, An KN. Superior-inferior stability of the shoulder: role of the coracohumeral ligament and the rotator interval capsule. Mayo Clin Proc. 1998;73(6):508–15.

    Article  CAS  Google Scholar 

  36. Itoi E, Newman SR, Kuechle DK, Morrey BF, An KN. Dynamic anterior stabilisers of the shoulder with the arm in abduction. J Bone Joint Surg (Br). 1994;76(5):834–6.

    Article  CAS  Google Scholar 

  37. Itoi E, Motzkin NE, Morrey BF, An KN. Stabilizing function of the long head of the biceps in the hanging arm position. J Shoulder Elb Surg. 1994;3(3):135–42.

    Article  CAS  Google Scholar 

  38. Itoi E, Motzkin NE, Morrey BF, An KN. Scapular inclination and inferior stability of the shoulder. J Shoulder Elb Surg. 1992;1(3):131–9.

    Article  CAS  Google Scholar 

  39. Itoi E, Motzkin NE, Browne AO, Hoffmeyer P, Morrey BF, An KN. Intraarticular pressure of the shoulder. Arthroscopy. 1993;9(4):406–13.

    Article  CAS  Google Scholar 

  40. Itoi E, Hsu HC, An KN. Biomechanical investigation of the glenohumeral joint. J Shoulder Elb Surg. 1996;5(5):407–2.

    Article  CAS  Google Scholar 

  41. Halder AM, Kuhl SG, Zobitz ME, Larson D, An KN. Effects of the glenoid labrum and glenohumeral abduction on stability of the shoulder joint through concavity-compression : an in vitro study. J Bone Joint Surg Am. 2001;83-A(7):1062–9.

    Article  CAS  Google Scholar 

  42. Sharkey NA, Marder RA, Hanson PB. The entire rotator cuff contributes to elevation of the arm. J Orthop Res. 1994;12(5):699–708.

    Article  CAS  Google Scholar 

  43. Sharkey NA, Marder RA. The rotator cuff opposes superior translation of the humeral head. Am J Sports Med. 1995;23(3):270–5.

    Article  CAS  Google Scholar 

  44. Yanagawa T, Goodwin CJ, Shelburne KB, Giphart JE, Torry MR, Pandy MG. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J Biomech Eng. 2008;130(2):021024.

    Article  Google Scholar 

  45. Thompson WO, Debski RE, Boardman ND 3rd, Taskiran E, Warner JJ, Fu FH, Woo SL. A biomechanical analysis of rotator cuff deficiency in a cadaveric model. Am J Sports Med. 1996;24(3):286–92.

    Article  CAS  Google Scholar 

  46. Campbell ST, Ecklund KJ, Chu EH, McGarry MH, Gupta R, Lee TQ. The role of pectoralis major and latissimus dorsi muscles in a biomechanical model of massive rotator cuff tear. J Shoulder Elb Surg. 2014;23(8):1136–42.

    Article  Google Scholar 

  47. Mura N, O'Driscoll SW, Zobitz ME, Heers G, Jenkyn TR, Chou SM, Halder AM, An KN. The effect of infraspinatus disruption on glenohumeral torque and superior migration of the humeral head: a biomechanical study. J Shoulder Elb Surg. 2003;12(2):179–84.

    Article  Google Scholar 

  48. Steenbrink F, de Groot JH, Veeger HE, van der Helm FC, Rozing PM. Glenohumeral stability in simulated rotator cuff tears. J Biomech. 2009;42(11):1740–5.

    Article  CAS  Google Scholar 

  49. Hsu JE, Reuther KE, Sarver JJ, Lee CS, Thomas SJ, Glaser DL, Soslowsky LJ. Restoration of anterior-posterior rotator cuff force balance improves shoulder function in a rat model of chronic massive tears. J Orthop Res. 2011;29(7):1028–33.

    Article  Google Scholar 

  50. Reuther KE, Thomas SJ, Tucker JJ, Sarver JJ, Gray CF, Rooney SI, Glaser DL, Soslowsky LJ. Disruption of the anterior-posterior rotator cuff force balance alters joint function and leads to joint damage in a rat model. J Orthop Res. 2014;32(5):638–44.

    Article  Google Scholar 

  51. Huxel Bliven KC, Anderson BE. Core stability training for injury prevention. Sports Health. 2013;5(6):514–22.

    Article  Google Scholar 

  52. Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13(5):316–25.

    Article  Google Scholar 

  53. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189–98.

    Article  Google Scholar 

  54. Rosemeyer JR, Hayes BT, Switzler CL, Hicks-Little CA. Effects of Core-Musculature Fatigue on Maximal Shoulder Strength. J Sport Rehabil. 2015;24(4):384–90.

    Article  Google Scholar 

  55. Radwan A, Francis J, Green A, Kahl E, Maciurzynski D, Quartulli A, Schultheiss J, Strang R, Weiss B. Is there a relation between shoulder dysfunction and core instability? Int J Sports Phys Ther. 2014;9(1):8–13.

    PubMed  PubMed Central  Google Scholar 

  56. Renfree KJ, Wright TW. Anatomy and biomechanics of the acromioclavicular and sternoclavicular joints. Clin Sports Med. 2003;22(2):219–37.

    Article  Google Scholar 

  57. Spencer EE, Kuhn JE, Huston LJ, Carpenter JE, Hughes RE. Ligamentous restraints to anterior and posterior translation of the sternoclavicular joint. J Shoulder Elb Surg. 2002;11(1):43–7.

    Article  Google Scholar 

  58. Fukuda K, Craig EV, An KN, Cofield RH, Chao EY. Biomechanical study of the ligamentous system of the acromioclavicular joint. J Bone Joint Surg Am. 1986;68:434–40.

    Article  CAS  Google Scholar 

  59. Klimkiewicz JJ, Williams GR, Sher JS, Karduna A, Des Jardins J, Iannotti JP. The acromioclavicular capsule as a restraint to posterior translation of the clavicle: a biomechanical analysis. J Shoulder Elb Surg. 1999;8:119–24.

    Article  CAS  Google Scholar 

  60. Rockwood C, Williams GR, Young D. Disorders of the acromioclavicular joint. Rockwood Greens Fract Adults. 1996;2(Ed 4):1341–3.

    Google Scholar 

  61. Lee KW, Debski RE, Chen CH, Woo SL, Fu FH. Functional evaluation of the ligaments at the acromioclavicular joint during anteroposterior and superoinferior translation. Am J Sports Med. 1997;25:858–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panayiotou Charalambous, C. (2019). Shoulder Biomechanics. In: The Shoulder Made Easy . Springer, Cham. https://doi.org/10.1007/978-3-319-98908-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98908-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98907-5

  • Online ISBN: 978-3-319-98908-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics