The Human Gut-Liver-Axis in Health and Disease pp 133-145 | Cite as
The Role of the Mycobiota in the Gut-Liver Axis
Abstract
The human mycobiota, consisting of all the fungi living in and on our body, is an understudied and underestimated part of the human microbiota. Fungal colonization is a well-established cause of human health problems, but for methodological reasons the mycobiota has not been studied as intensely as other constituents of the human microbiota. In this chapter, we highlight the importance of human gut mycobiota and host-fungal homeostasis. We lay out currently proposed mechanisms through which disturbance of host-fungal homeostasis can lead to fungal-related diseases in general as well as liver diseases in particular. We also address the methodological challenges of investigating the fungal component of the human microbiota. While new sequencing technologies have improved our understanding of the human microbiota, investigating and characterizing fungi requires more attention. We draw parallels to the better-established sequencing-based characterization of prokaryotes in the human microbiota, and examine the perspectives for advancing the field of studying fungal communities.
Keywords
Human gut microbiota Human gut mycobiota Human mycobiota Fungal microbiota Fungi Gut-liver axis Liver diseasesReferences
- 1.NIH HMP Working Group TNHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23.CrossRefGoogle Scholar
- 2.Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 4.Wheeler ML, Limon JJ, Underhill DM. Immunity to commensal fungi: detente and disease. Annu Rev Pathol Mech Dis. 2017;12(1):359–85.CrossRefGoogle Scholar
- 5.Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol. 2013;21(7):334–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Sam QH, Chang MW, Chai LYA. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci. 2017;18(2):pii: E330.CrossRefGoogle Scholar
- 7.Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127(7):2829–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis. 2011;70(4):492–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. Altered gut microbiota in Rett syndrome. Microbiome. 2016;4(1):41.PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog. 2015;11(11):1–26.CrossRefGoogle Scholar
- 11.Mar Rodríguez M, Pérez D, Javier Chaves F, Esteve E, Marin-Garcia P, Xifra G, et al. Obesity changes the human gut mycobiome. Sci Rep. 2015;5:14600.Google Scholar
- 12.Hoarau G, Mukherjee PK, Gower-rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(October):1–11.Google Scholar
- 13.Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Hager CL, Ghannoum MA. The mycobiome: role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis. 2017;49(11):1171–6.PubMedCrossRefGoogle Scholar
- 15.Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin Y-W, Wei L-N, et al. High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. mSphere. 2017;2(5):e00351–17.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43(7):831–41.PubMedCrossRefGoogle Scholar
- 17.Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio. 2016;7(5):1–12.CrossRefGoogle Scholar
- 18.Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One. 2012;7(4):e36313.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Sokol H, Leducq V, Aschard H, Pham H, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–48.PubMedCrossRefGoogle Scholar
- 20.Sellart-Altisent M, Torres-Rodríguez JM, Gómez de Ana S, Alvarado-Ramírez E. Nasal fungal microbiota in allergic and healthy subjects. Rev Iberoam Micol. 2007;24(2):125–30.PubMedCrossRefGoogle Scholar
- 21.Limper AH, Adenis A, Le T, Harrison TS. Fungal infections in HIV/AIDS. Lancet Infect Dis. 2017;17(11):e334–43.PubMedCrossRefGoogle Scholar
- 22.Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet. 2003;362(9398):1828–38.PubMedCrossRefGoogle Scholar
- 23.Fraczek MG, Chishimba L, Niven RM, Bromley M, Simpson A, Smyth L, et al. Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. J Allergy Clin Immunol. 2017:pii: S0091-6749(17)31732-3.Google Scholar
- 24.Ng TTC, Robson GD, Denning DW. Hydrocortisone-enhanced growth of Aspergillus spp.: implications for pathogenesis. Microbiology. 1994;140(9):2475–9.PubMedCrossRefGoogle Scholar
- 25.Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, et al. Human Dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361(18):1760–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Lamas B, Richard ML, Leducq V, Pham H-P, Michel M-L, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.GWAS Catalog [Internet]. [cited 2017 Nov 9]. Available from: https://www.ebi.ac.uk/gwas/
- 28.Cui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med. 2013;5(63):1–12.Google Scholar
- 29.Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol. 2012;3(December):1–12.Google Scholar
- 30.Millsap KW, van der Mei HC, Bos R, Busscher HJ. Adhesive interactions between medically important yeasts and bacteria. FEMS Microbiol Rev. 1998;21(4):321–36.PubMedCrossRefGoogle Scholar
- 31.Rizzetto L, Ifrim DC, Moretti S, Tocci N, Cheng S-C, Quintin J, et al. Fungal chitin induces trained immunity in human monocytes during cross-talk of the host with Saccharomyces cerevisiae. J Biol Chem. 2016;291(15):7961–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials – a mycologists perspective. Mycologia. 2015;107(6):1057–73.PubMedCrossRefGoogle Scholar
- 34.Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8(6):e66019.PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Mukherjee PK, Sendid B, Hoarau G, Colombel J-F, Poulain D, Ghannoum MA. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2015;12(2):77–87.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Iliev ID, Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol. 2017;7(10):635–47.CrossRefGoogle Scholar
- 37.Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5(1):153.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol. 2015;15:9–17.CrossRefGoogle Scholar
- 39.Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37(Database):D141–5.CrossRefGoogle Scholar
- 42.Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 2010;186(2):281–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 43.Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database – the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol. 2015;53(4):313–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL. Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J Clin Microbiol. 2009;47(5):1325–32.PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Stockinger H, Krüger M, Schüßler A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytol. 2010;187(2):461–74.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4(10):914–9.Google Scholar
- 48.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012;28(16):2106–13.PubMedPubMedCentralCrossRefGoogle Scholar
- 50.Thorsen J, Brejnrod A, Mortensen M, Rasmussen MA, Stokholm J, Al-Soud WA, et al. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Microbiome. 2016;4(1):62.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Gregory Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Větrovský T, Baldrian P. Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils. 2013;49(8):1027–37.CrossRefGoogle Scholar
- 54.Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, et al. Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol. 2013;199(1):288–99.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol. 2015;1(3):275–84.PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 2015;148(1):30–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Wang L, Llorente C, Hartmann P, Yang A-M, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods. 2015;421:44–53.PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877–87.PubMedCrossRefPubMedCentralGoogle Scholar
- 59.Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol. 2000;32(5):742–7.PubMedCrossRefGoogle Scholar
- 60.Shrestha R, Shrestha R, Qin X-Y, Kuo T-F, Oshima Y, Iwatani S, et al. Fungus-derived hydroxyl radicals kill hepatic cells by enhancing nuclear transglutaminase. Sci Rep. 2017;7(1):4746.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Ferrier L, Bérard F, Debrauwer L, Chabo C, Langella P, Buéno L, et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol. 2006;168(4):1148–54.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev. 2013;71(7):483–99.PubMedCrossRefGoogle Scholar
- 63.Ying W, Jing T, Bing C, Baifang W, Dai Z, Bingyuan W. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol Med Rep. 2014;9(6):2352–6.CrossRefGoogle Scholar
- 64.Dunagan M, Chaudhry K, Samak G, Rao RK. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism. AJP Gastrointest Liver Physiol. 2012;303(12):G1356–64.CrossRefGoogle Scholar
- 65.Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology. 2015;61(3):883–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Rodondo N, Harvey F, Williams R. Fungal infection: a common, unrecognised of acute liver failure complication. J Hepatol. 1991;12:1–9.CrossRefGoogle Scholar
- 67.Anttila V-J, Elonen E, Nordling S, Sivonen A, Ruutu T, Ruutu P. Hepatosplenic candidiasis in patients with acute leukemia: incidence and prognostic implications. Clin Infect Dis. 1997;24(3):375–80.PubMedCrossRefGoogle Scholar
- 68.Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol. 2003;4(2):140–56.PubMedCrossRefGoogle Scholar
- 69.Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev. 2009;89:991–1023.PubMedCrossRefGoogle Scholar
- 70.Mirza A, Liu SL, Frizell E, Zhu J, Maddukuri S, Martinez J, et al. A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am J Phys. 1997;272(2 Pt 1):G281–8.Google Scholar
- 71.Tatsukawa H, Fukaya Y, Frampton G, Martinez-Fuentes A, Suzuki K, Kuo TF, et al. Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology. 2009;136(5):1783–95.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Wu J, Liu SL, Zhu JL, Norton PA, Nojiri S, Hoek JB, et al. Roles of tissue transglutaminase in ethanol-induced inhibition of hepatocyte proliferation and α1-adrenergic signal transduction. J Biol Chem. 2000;275(29):22213–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 73.Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S. Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J Cell Physiol. 2012;227(3):1130–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 74.Lee ZW, Kwon SM, Kim SW, Yi SJ, Kim YM, Ha KS. Activation of in situ tissue transglutaminase by intracellular reactive oxygen species. Biochem Biophys Res Commun. 2003;305(3):633–40.PubMedCrossRefGoogle Scholar
- 75.Bhatt MP, Lim YC, Hwang J, Na S, Kim YM, Ha KS. C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes. 2013;62(1):243–53.PubMedCrossRefGoogle Scholar
- 76.Schröter C, Hipler UC, Wilmer A, Kunkel W, Wollina U. Generation of reactive oxygen species by Candida albicans in relation to morphogenesis. Arch Dermatol Res. 2000;292(5):260–4.PubMedCrossRefGoogle Scholar
- 77.Hsu HY, Wen MH. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem. 2002;277(25):22131–9.PubMedCrossRefGoogle Scholar
- 78.Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–6.PubMedCrossRefGoogle Scholar
- 79.Meyer A, Brach T. Dynamic redox measurements with redox-sensitive GFP in plants by confocal laser scanning microscopy. In: Pfannschmidt T, editor. Plant signal transduction. Methods in molecular biology, vol. 479. Totowa: Humana Press; 2009. p. 479.Google Scholar
- 80.Tsoni SV, Brown GD. beta-Glucans and dectin-1. Ann N Y Acad Sci. 2008;1143:45–60.PubMedCrossRefPubMedCentralGoogle Scholar
- 81.Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21(1):30–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 82.Kankkunen P, Teirila L, Rintahaka J, Alenius H, Wolff H, Matikainen S. (1,3)-beta-glucans activate both Dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol. 2010;184(11):6335–42.PubMedCrossRefGoogle Scholar
- 83.Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, et al. beta_Glucans and dectin-1. J Immunol. 2002;169(7):3876–82.PubMedCrossRefGoogle Scholar
- 85.Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-B activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 86.Swidergall M, Solis NV, Lionakis MS, Filler SG. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans. Nat Microbiol. 2018;3(1):53–61.PubMedCrossRefPubMedCentralGoogle Scholar