Skip to main content

Fetal Programming of Fatty Liver Disease

  • Chapter
  • First Online:
The Human Gut-Liver-Axis in Health and Disease

Abstract

Accumulation of fat in the hepatocytes also called non-alcoholic fatty liver disease (NAFLD) refers to a spectrum of liver disease ranging from simple fatty liver (steatosis), to nonalcoholic steatohepatitis (NASH) to liver cirrhosis. NAFLD is the most common liver disease in the world and the prevalence of NAFLD usually parallel that of obesity. NAFLD is caused by interactions between many environmental and genetic factors, and is associated with metabolic dysfunction including insulin resistance and dyslipidemia and is thus increasing the risk of type 2 diabetes (T2D).

The concept of fetal programming links the environmental conditions during fetal development with risk of diseases later in life. There is evidence that the liver is a target organ for programming and both fetal under- and overnutrition, may contribute to the development of obesity, hyperlipidemia, insulin resistance and T2D, all of which are closely associated with NAFLD.

Fetal programming can alter the epigenetic marks of the developing offspring and thus programming of organ defects. Epigenetic modifiers are involved in lipid metabolism, mitochondrial damage, oxidative stress, inflammation, among others, increasing the risk of hepatic lipid accumulation and of NAFLD. Therefore, studies of epigenetic changes and their roles in the pathogenesis of NAFLD could improve our understanding of molecular mechanisms underlying the association between fetal programming and fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

DAG:

Diacylglycerol

DNL:

De novo lipogenesis

DXA:

Dual-energy X-ray absorptiometry

DOHaD:

Developmental Origins of Health and Disease

FFA:

Free fatty acids

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

GLUT4:

Glucose transporter-4

GWA:

Genome-wide association

HBW:

High birth weight

IGT:

Impaired glucose tolerance

IMCL:

Intramyocellular lipids

IUGR:

Intrauterine growth restriction

LBW:

Low birth weight

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

NBW:

Normal birth weight

TG:

Triglycerides

T2D:

Type 2 diabetes

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  2. Spengler EK, Loomba R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin Proc. 2015;90:1233–46.

    Article  PubMed  Google Scholar 

  3. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–31.

    Article  CAS  PubMed  Google Scholar 

  4. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–25.

    Article  CAS  PubMed  Google Scholar 

  5. Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet. 2017;49:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed M. Non-alcoholic fatty liver disease in 2015. World J Hepatol. 2015;7:1450–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124–31.

    Article  PubMed  Google Scholar 

  8. Loomba R, Abraham M, Unalp A, et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology. 2012;56:943–51.

    Article  PubMed  Google Scholar 

  9. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  10. Defronzo RA. Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia. 1992;35:389–97.

    Article  CAS  PubMed  Google Scholar 

  11. Kahn CR. Insulin resistance: a common feature of diabetes mellitus. N Engl J Med. 1986;315:252–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003;46:3–19.

    Article  CAS  PubMed  Google Scholar 

  13. Beck-Nielsen H, Groop LC. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest. 1994;94:1714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin N Am. 2004;88:787–835.

    Article  CAS  PubMed  Google Scholar 

  16. Lotta LA, Gulati P, Day FR, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49:17–26.

    Article  CAS  PubMed  Google Scholar 

  17. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim Biophys Acta. 2010;1801:338–49.

    Article  CAS  PubMed  Google Scholar 

  18. McQuaid SE, Hodson L, Neville MJ, et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes. 2011;60:47–55.

    Article  CAS  PubMed  Google Scholar 

  19. Brøns C, Jensen CB, Storgaard H, et al. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab. 2008;93:3885–92.

    Article  PubMed  CAS  Google Scholar 

  20. Fonvig CE, Chabanova E, Andersson EA, et al. 1H-MRS measured ectopic fat in liver and muscle in Danish lean and obese children and adolescents. PLoS One. 2015;10:e0135018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Groop L. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996;45:1585–93.

    Article  CAS  PubMed  Google Scholar 

  22. Bennett PH. Type 2 diabetes among the Pima Indians of Arizona: an epidemic attributable to environmental change? Nutr Rev. 1999;57:S51–4.

    Article  CAS  PubMed  Google Scholar 

  23. Lillioja S, Mott DM, Zawadzki JK, et al. In vivo insulin action is familial characteristic in nondiabetic Pima Indians. Diabetes. 1987;36:1329–35.

    Article  CAS  PubMed  Google Scholar 

  24. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lango H, the U.K. Type 2 Diabetes Genetics Consortium, Palmer CN, et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes. 2008;57(11):3129–35.

    Article  CAS  Google Scholar 

  26. Ahlqvist E, Ahluwalia TS, Groop L. Genetics of type 2 diabetes. Clin Chem. 2011;57:241–54.

    Article  CAS  PubMed  Google Scholar 

  27. Hales CN, Barker DJ, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  CAS  PubMed  Google Scholar 

  29. Hales CN, Desai M, Ozanne SE, Crowther NJ. Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans. 1996;24:341–50.

    Article  CAS  PubMed  Google Scholar 

  30. Martin-Gronert MS, Ozanne SE. Maternal nutrition during pregnancy and health of the offspring. Biochem Soc Trans. 2006;34:779–82.

    Article  CAS  PubMed  Google Scholar 

  31. Jensen CB, Storgaard H, Dela F, Holst JJ, Madsbad S, Vaag AA. Early differential defects of insulin secretion and action in 19-year-old Caucasian men who had low birth weight. Diabetes. 2002;51:1271–80.

    Article  CAS  PubMed  Google Scholar 

  32. Ravelli ACJ, van der Meulen JHP, Michels RPJ, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.

    Article  CAS  PubMed  Google Scholar 

  33. Clausen TD, Mathiesen ER, Hansen T, et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab. 2009;94:2464–70.

    Article  CAS  PubMed  Google Scholar 

  34. Carlsson S, Persson PG, Alvarsson M, et al. Low birth weight, family history of diabetes, and glucose intolerance in Swedish middle-aged men. Diabetes Care. 1999;22:1043–7.

    Article  CAS  PubMed  Google Scholar 

  35. Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31:340–6.

    Article  PubMed  Google Scholar 

  36. Sandboge S, Perala MM, Salonen MK, et al. Early growth and non-alcoholic fatty liver disease in adulthood-the NAFLD liver fat score and equation applied on the Helsinki Birth Cohort Study. Ann Med. 2013;45:430–7.

    Article  PubMed  Google Scholar 

  37. Poulsen P, Vaag A. The intrauterine environment as reflected by birth size and twin and Zygosity status influences insulin action and intracellular glucose metabolism in an age- or time-dependent manner. Diabetes. 2006;55:1819–25.

    Article  CAS  PubMed  Google Scholar 

  38. Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  CAS  PubMed  Google Scholar 

  39. Hales CN, Barker DJP. The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  40. Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res. 2004;56:311–7.

    Article  PubMed  Google Scholar 

  41. Ozanne SE, Constancia M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab. 2007;3:539–46.

    Article  CAS  PubMed  Google Scholar 

  42. Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends Endocrinol Metab. 2004;15:183–7.

    Article  CAS  PubMed  Google Scholar 

  43. Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition. Front Genet. 2011;2:27.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Whincup PH, Kaye SJ, Owen CG, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300:2886–97.

    Article  CAS  PubMed  Google Scholar 

  45. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165:849–57.

    Article  PubMed  Google Scholar 

  46. Hales CN, Ozanne SE. The dangerous road of catch-up growth. J Physiol. 2003;547:5–10.

    Article  CAS  PubMed  Google Scholar 

  47. Arshad R, Karim N, Ara HJ. Effects of insulin on placental, fetal and maternal outcomes in gestational diabetes mellitus. Pak J Med Sci. 2014;30:240–4.

    PubMed  PubMed Central  Google Scholar 

  48. Aberg A, Westbom L. Association between maternal pre-existing or gestational diabetes and health problems in children. Acta Paediatr. 2001;90:746–50.

    Article  CAS  PubMed  Google Scholar 

  49. Aberg A, Rydhstrom H, Kallen B, Kallen K. Impaired glucose tolerance during pregnancy is associated with increased fetal mortality in preceding sibs. Acta Obstet Gynecol Scand. 1997;76:212–7.

    Article  CAS  PubMed  Google Scholar 

  50. Macfarlane CM, Tsakalakos N. The extended Pedersen hypothesis. Clin Physiol Biochem. 1988;6:68–73.

    CAS  PubMed  Google Scholar 

  51. Damm P. Future risk of diabetes in mother and child after gestational diabetes mellitus. Int J Gynaecol Obstet. 2009;104(Suppl 1):S25–6.

    Article  PubMed  Google Scholar 

  52. Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. 2017;8:513–9.

    Article  CAS  PubMed  Google Scholar 

  53. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Defronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38:387–95.

    Article  CAS  PubMed  Google Scholar 

  55. Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279:32345–53.

    Article  CAS  PubMed  Google Scholar 

  56. Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183–92.

    Article  CAS  PubMed  Google Scholar 

  57. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7–18.

    Article  CAS  PubMed  Google Scholar 

  58. Randle PJ, Kerbey AL, Espinal J. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Rev. 1988;4:623–38.

    Article  CAS  PubMed  Google Scholar 

  59. Ravelli G, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.

    Article  CAS  PubMed  Google Scholar 

  60. Lussana F, Painter RC, Ocke MC, Buller HR, Bossuyt PM, Roseboom TJ. Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am J Clin Nutr. 2008;88:1648–52.

    Article  CAS  PubMed  Google Scholar 

  61. de Rooij SR, Painter RC, Roseboom TJ, et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006;49:637–43.

    Article  CAS  PubMed  Google Scholar 

  62. Wang N, Chen Y, Ning Z, et al. Exposure to famine in early life and nonalcoholic fatty liver disease in adulthood. J Clin Endocrinol Metab. 2016;101:2218–25.

    Article  CAS  PubMed  Google Scholar 

  63. Chen JP, Peng B, Tang L, et al. Fetal and infant exposure to the Chinese famine increases the risk of fatty liver disease in Chongqing, China. J Gastroenterol Hepatol. 2016;31:200–5.

    Article  PubMed  Google Scholar 

  64. Fraser A, Ebrahim S, Smith GD, Lawlor DA. The associations between birthweight and adult markers of liver damage and function. Paediatr Perinat Epidemiol. 2008;22:12–21.

    PubMed  Google Scholar 

  65. Nobili V, Marcellini M, Marchesini G, et al. Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children. Diabetes Care. 2007;30:2638–40.

    Article  PubMed  Google Scholar 

  66. Bugianesi E, Bizzarri C, Rosso C, et al. Low birthweight increases the likelihood of severe steatosis in pediatric non-alcoholic fatty liver disease. Am J Gastroenterol. 2017;112:1277–86.

    Article  PubMed  Google Scholar 

  67. Brøns C, Jensen CB, Storgaard H, et al. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol. 2009;587:2387–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ribel-Madsen A, Ribel-Madsen R, Brons C, Newgard CB, Vaag AA, Hellgren LI. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men. Phys Rep. 2016;4(19):pii: e12977.

    Article  CAS  Google Scholar 

  69. Erhuma A, Salter AM, Sculley DV, Langley-Evans SC, Bennett AJ. Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. Am J Physiol Endocrinol Metab. 2007;292:E1702–14.

    Article  CAS  PubMed  Google Scholar 

  70. Hyatt MA, Gardner DS, Sebert S, et al. Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring. Reproduction. 2011;141:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamada M, Wolfe D, Han G, French SW, Ross MG, Desai M. Early onset of fatty liver in growth-restricted rat fetuses and newborns. Congenit Anom (Kyoto). 2011;51:167–73.

    Article  CAS  Google Scholar 

  72. Lane RH, Flozak AS, Ogata ES, Bell GI, Simmons RA. Altered hepatic gene expression of enzymes involved in energy metabolism in the growth-retarded fetal rat. Pediatr Res. 1996;39:390–4.

    Article  CAS  PubMed  Google Scholar 

  73. Ogata ES, Swanson SL, Collins JW Jr, Finley SL. Intrauterine growth retardation: altered hepatic energy and redox states in the fetal rat. Pediatr Res. 1990;27:56–63.

    Article  CAS  PubMed  Google Scholar 

  74. Lane RH, MacLennan NK, Hsu JL, Janke SM, Pham TD. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology. 2002;143:2486–90.

    Article  CAS  PubMed  Google Scholar 

  75. Lane RH, Kelley DE, Gruetzmacher EM, Devaskar SU. Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R183–90.

    Article  CAS  PubMed  Google Scholar 

  76. Desai M, Byrne CD, Zhang J, Petry CJ, Lucas A, Hales CN. Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am J Physiol Gastrointest Liver Physiol. 1997;272:G1083–90.

    Article  CAS  Google Scholar 

  77. Peterside IE, Selak MA, Simmons RA. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab. 2003;285:E1258–66.

    Article  CAS  PubMed  Google Scholar 

  78. Ozanne SE, Wang CL, Coleman N, Smith GD. Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol Endocrinol Metab. 1996;271:E1128–34.

    Article  CAS  Google Scholar 

  79. Morris TJ, Vickers M, Gluckman P, Gilmour S, Affara N. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits. PLoS One. 2009;4:e7271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sivan E, Homko CJ, Chen X, Reece EA, Boden G. Effect of insulin on fat metabolism during and after normal pregnancy. Diabetes. 1999;48:834–8.

    Article  CAS  PubMed  Google Scholar 

  81. Alvarez JJ, Montelongo A, Iglesias A, Lasuncion MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res. 1996;37:299–308.

    CAS  PubMed  Google Scholar 

  82. Di CG, Miccoli R, Volpe L, et al. Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet Med. 2005;22:21–5.

    Google Scholar 

  83. Knopp RH, Bergelin RO, Wahl PW, Walden CE. Relationships of infant birth size to maternal lipoproteins, apoproteins, fuels, hormones, clinical chemistries, and body weight at 36 weeks gestation. Diabetes. 1985;34(Suppl 2):71–7.

    Article  PubMed  Google Scholar 

  84. Bruce KD, Cagampang FR, Argenton M, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50:1796–808.

    Article  CAS  PubMed  Google Scholar 

  85. Mouralidarane A, Soeda J, Visconti-Pugmire C, et al. Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology. 2013;58:128–38.

    Article  CAS  PubMed  Google Scholar 

  86. McCurdy CE, Bishop JM, Williams SM, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119:323–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Brumbaugh DE, Tearse P, Cree-Green M, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr. 2013;162:930–6.

    Article  CAS  PubMed  Google Scholar 

  88. Modi N, Murgasova D, Ruager-Martin R, et al. The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatr Res. 2011;70:287–91.

    Article  PubMed  Google Scholar 

  89. Patel KR, White FV, Deutsch GH. Hepatic steatosis is prevalent in stillborns delivered to women with diabetes mellitus. J Pediatr Gastroenterol Nutr. 2015;60:152–8.

    Article  CAS  PubMed  Google Scholar 

  90. Newton KP, Feldman HS, Chambers CD, et al. Low and high birth weights are risk factors for nonalcoholic fatty liver disease in children. J Pediatr. 2017;187:141–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion. 2010;10:12–31.

    Article  CAS  PubMed  Google Scholar 

  93. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang J, Wu Z, Li D, et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal. 2012;17:282–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahrens M, Ammerpohl O, von Schönfels W, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.

    Article  CAS  PubMed  Google Scholar 

  96. Sookoian S, Rosselli MS, Gemma C, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000.

    Article  CAS  PubMed  Google Scholar 

  97. Dudley KJ, Sloboda DM, Connor KL, Beltrand J, Vickers MH. Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One. 2011;6:e21662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Burgueno AL, Cabrerizo R, Gonzales MN, Sookoian S, Pirola CJ. Maternal high-fat intake during pregnancy programs metabolic-syndrome-related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem. 2013;24:6–13.

    Article  CAS  PubMed  Google Scholar 

  99. Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331:1315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Suter MA, Chen A, Burdine MS, et al. A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J. 2012;26:5106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Strakovsky RS, Zhang X, Zhou D, Pan YX. Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J Physiol. 2011;589:2707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tessitore A, Cicciarelli G, Del VF, et al. MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice. BMC Cancer. 2016;16:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–20.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang J, Zhang F, Didelot X, et al. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics. 2009;10:478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Brøns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brøns, C., Justesen, L. (2019). Fetal Programming of Fatty Liver Disease. In: Krag, A., Hansen, T. (eds) The Human Gut-Liver-Axis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-98890-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98890-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98889-4

  • Online ISBN: 978-3-319-98890-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics