Skip to main content

The Role of microRNAs in the Gut-Liver Axis

  • 1029 Accesses

Abstract

MicroRNAs (miRNAs) is a unique class of small, non-coding RNAs that dictate the fine tuning of fundamental biological processes such as cell cycle, cell differentiation, proliferation, and apoptosis. They coordinate hepatic growth and pattern formation during embryonic development, mediating control and maintenance of hepatic metabolic homeostasis, linking the gut microbiome and the intestinal barrier integrity to the liver condition in the adult healthy liver. Tissue-specific miRNAs dysregulation contributes to fibrogenesis, lipid and glucose metabolic abnormalities, altered bacterial flora and bile acids turnover, leading to fatty liver disease onset and progression, coupled with alterations in gut microbiota and intense inflammatory response. Circulating miRNAs communicate messages between close or distant cells and/or tissues and can demonstrate unique expression profile patterns. In the liver-gut crosstalk, miR-122 is the most profound paradigm of the fine-tuned regulatory mechanisms exerted on the apoptotic, inflammatory, lipogenetic, hypoxic, and carcinogenetic signaling pathways circuit. The altered expression of miRNAs could provide a powerful implementation to distinguish different types and stages of diseases and strongly advocates miRNA profiling as a viable alternate means for diagnosis and patient prognosis. Finally, miRNAs are a realistic and promising prospect for novel therapies as currently a handful of clinical studies have being conducted to exploit their therapeutic value in gut-liver axis pathological conditions. This chapter summarizes the current understanding of miRNAs’ expression and interactions in the gut and liver axis, their contribution in normal and pathological conditions and their potential value as diagnostic/prognostic biomarkers and therapeutic targets.

Keywords

  • Bile Acid Turnover
  • Drug-induced Liver Injury (DILI)
  • Nonalcoholic Fatty Liver Disease (NAFLD)
  • miRNA-induced Silencing Complex
  • Hepatic Stellate Cells (HSCs)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Brun P, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G518–25.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    CrossRef  CAS  PubMed  Google Scholar 

  5. Landgraf P, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wahid F, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–43.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301(5631):336–8.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–42.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. St Laurent G, et al. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics. 2012;13:504.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol. 2013;13(9):666–78.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hobert O. Gene regulation by transcription factors and microRNAs. Science. 2008;319(5871):1785–6.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Kim N, Kim H, Jung I, Kim Y, Kim D, Han Y-M. Expression profiles of miRNAs in human embryonic stem cells during hepatocyte differentiation. Hepatol Res. 2011;41:170–83. https://doi.org/10.1111/j.1872-034X.2010.00752.x.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Tzur G, et al. MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS One. 2008;3(11):e3726.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lagos-Quintana M, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Chang J, et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1(2):106–13.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Xu H, et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology. 2010;52(4):1431–42.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Tzur G, et al. Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One. 2009;4(10):e7511.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu D, et al. Quantitative analysis of miRNA expression in several developmental stages of human livers. Hepatol Res. 2010;40(8):813–22.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Wei W, et al. Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b and mir20a in repressing transforming growth factor-beta signaling. Hepatology. 2013;57(6):2491–501.

    CrossRef  CAS  PubMed  Google Scholar 

  21. Bernstein E, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Hand NJ, et al. Hepatic function is preserved in the absence of mature microRNAs. Hepatology. 2009;49(2):618–26.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Yu F, et al. Suppression of collagen synthesis by Dicer gene silencing in hepatic stellate cells. Mol Med Rep. 2014;9(2):707–14.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Gregory PA, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Park SM, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung CJ, et al. Human ESC self-renewal promoting microRNAs induce epithelial-mesenchymal transition in hepatocytes by controlling the PTEN and TGFbeta tumor suppressor signaling pathways. Mol Cancer Res. 2012;10(7):979–91.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hand NJ, et al. The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology. 2009;136(3):1081–90.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Krutzfeldt J, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122. Biochem Soc Trans. 2010;38(6):1553–7.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Esau C, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Tsai WC, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122(8):2884–97.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hsu SH, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122(8):2871–83.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyaaki H, et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int. 2014;34(7):e302–7.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Cermelli S, et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011;6(8):e23937.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu XL, et al. Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. World J Gastroenterol. 2016;22(44):9844–52.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kong L, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1):61–9.

    CrossRef  CAS  PubMed  Google Scholar 

  37. Meng F, et al. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am J Pathol. 2012;181(3):804–17.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13(4):239–50.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Z, Cappello T, Wang L. Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin B. 2015;5(2):145–50.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Marquart TJ, et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228–32.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rayner KJ, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  42. Celikbilek M, et al. Circulating microRNAs in patients with non-alcoholic fatty liver disease. World J Hepatol. 2014;6(8):613–20.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Tan Y, et al. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014;9(8):e105192.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pirola CJ, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64(5):800–12.

    CrossRef  CAS  PubMed  Google Scholar 

  45. Fuchs M. Non-alcoholic fatty liver disease: the bile acid-activated farnesoid x receptor as an emerging treatment target. J Lipids. 2012;2012:934396.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Chen T, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83(1):131–9.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Gerin I, et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab. 2010;299(2):E198–206.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iliopoulos D, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010;51(6):1513–23.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakanishi N, et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun. 2009;385(4):492–6.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Lin Q, et al. A role of miR-27 in the regulation of adipogenesis. FEBS J. 2009;276(8):2348–58.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  51. Prats-Puig A, et al. Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab. 2013;98(10):E1655–60.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Lorente-Cebrian S, et al. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-alpha. PLoS One. 2014;9(1):e86800.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  53. Vickers KC, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533–42.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Singh N, et al. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci. 2012;8(2):171–86.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Filip AT, et al. Microbiota small RNAs in inflammatory bowel disease. J Gastrointestin Liver Dis. 2016;25(4):509–16.

    PubMed  Google Scholar 

  56. Blasco-Baque V, et al. Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice. Diabetologia. 2017;60(4):690–700.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karlsson CL, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.

    CrossRef  Google Scholar 

  58. Benyon RC, et al. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology. 1996;110(3):821–31.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Iredale JP, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102(3):538–49.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anty R, Lemoine M. Liver fibrogenesis and metabolic factors. Clin Res Hepatol Gastroenterol. 2011;35:S10–20.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Liedtke C, et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair. 2013;6(1):19.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Vettori S, Gay S, Distler O. Role of MicroRNAs in fibrosis. Open Rheumatol J. 2012;6:130–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006;10(1):76–99.

    CrossRef  CAS  PubMed  Google Scholar 

  64. Zimmermann HW, Tacke F. Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets. 2011;10(6):509–36.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Mann J, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–14. 714.e1–4

    CrossRef  CAS  PubMed  Google Scholar 

  66. Venugopal SK, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol. 2010;298(1):G101–6.

    CrossRef  CAS  PubMed  Google Scholar 

  67. Pogribny IP, et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Investig. 2010;90(10):1437–46.

    CrossRef  CAS  PubMed  Google Scholar 

  68. Kodama T, et al. Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J Clin Invest. 2011;121(8):3343–56.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roderburg C, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Wang J, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget. 2015;6(9):7325–38.

    PubMed  Google Scholar 

  71. Chen C, et al. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res. 2011;317(12):1714–25.

    CrossRef  CAS  PubMed  Google Scholar 

  72. Van Keuren-Jensen KR, et al. microRNA changes in liver tissue associated with fibrosis progression in patients with hepatitis C. Liver Int. 2016;36(3):334–43.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Roderburg C, Luedde T. Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol. 2014;61(6):1434–7.

    CrossRef  PubMed  Google Scholar 

  74. Li WQ, et al. The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J. 2011;278(9):1522–32.

    CrossRef  CAS  PubMed  Google Scholar 

  75. Murakami Y, et al. PLoS One. 2011;6(1)

    Google Scholar 

  76. Ji J, et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009;583(4):759–66.

    CrossRef  CAS  PubMed  Google Scholar 

  77. Roderburg C, et al. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One. 2012:7(3).

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang K, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009;106(11):4402–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liang C, Bu S, Fan X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-beta1/Smad3. Cell Biochem Funct. 2016;34(5):326–33.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang B, et al. miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes. 2011;60(1):280–7.

    CrossRef  CAS  PubMed  Google Scholar 

  81. Csak T, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS One. 2015;10(6):e0129251.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bala S, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol. 2016;64(6):1378–87.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lieber CS, Jones DP, Decarli LM. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J Clin Invest. 1965;44:1009–21.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141(5):1572–85.

    CrossRef  CAS  PubMed  Google Scholar 

  85. Levene AP, Goldin RD. The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology. 2012;61(2):141–52.

    CrossRef  PubMed  Google Scholar 

  86. Wilfred de Alwis NM, Day CP. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease. Semin Liver Dis. 2007;27(1):44–54.

    CrossRef  PubMed  CAS  Google Scholar 

  87. O'Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Hepatology. 2010;51(1):307–28.

    CrossRef  PubMed  Google Scholar 

  88. Tsukamoto H, et al. “Second hit” models of alcoholic liver disease. Semin Liver Dis. 2009;29(2):178–87.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  89. Starkey Lewis PJ, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology. 2011;54(5):1767–76.

    CrossRef  CAS  PubMed  Google Scholar 

  90. Ward J, et al. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A. 2014;111(33):12169–74.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ding X, et al. Circulating microRNA-122 as a potential biomarker for liver injury. Mol Med Rep. 2012;5(6):1428–32.

    CAS  PubMed  Google Scholar 

  92. Jetten MJ, et al. Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol. 2012;259(3):320–8.

    CrossRef  CAS  PubMed  Google Scholar 

  93. Brandon-Warner E, et al. Processing of miR17-92 cluster in hepatic stellate cells promotes hepatic fibrogenesis during alcohol-induced injury. Alcohol Clin Exp Res. 2016;40(7):1430–42.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eguchi A, et al. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology. 2017;65(2):475–90.

    CrossRef  CAS  PubMed  Google Scholar 

  95. Xu Y, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer. 2011;128(2):412–7.

    CrossRef  PubMed  CAS  Google Scholar 

  96. Chen LL, et al. Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma. Genet Mol Res. 2016;15(4)

    Google Scholar 

  97. Zhang Y, et al. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem. 2010;56(12):1830–8.

    CrossRef  CAS  PubMed  Google Scholar 

  98. Punzalan CS, Bukong TN, Szabo G. Alcoholic hepatitis and HCV interactions in the modulation of liver disease. J Viral Hepat. 2015;22(10):769–76.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  99. McCrae JC, et al. Ethanol consumption produces a small increase in circulating miR-122 in healthy individuals. Clin Toxicol (Phila). 2016;54(1):53–5.

    CrossRef  CAS  Google Scholar 

  100. Satishchandran A, et al. MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease. Gastroenterology. 2018;154(1):238–252.e7.

    CrossRef  CAS  PubMed  Google Scholar 

  101. Xu P, et al. Evaluation of a combinational use of serum microRNAs as biomarkers for liver diseases. Clin Res Hepatol Gastroenterol. 2017;41(3):254–61.

    CrossRef  CAS  PubMed  Google Scholar 

  102. Ladeiro Y, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47(6):1955–63.

    CrossRef  CAS  PubMed  Google Scholar 

  103. Blaya D, et al. Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut. 2016;65(9):1535–45.

    CrossRef  PubMed  Google Scholar 

  104. Saha B, et al. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem. 2016;291(1):149–59.

    CrossRef  CAS  PubMed  Google Scholar 

  105. Beech RD, et al. Stress-related alcohol consumption in heavy drinkers correlates with expression of miR-10a, miR-21 and components of the TAR-RNA binding protein (TRBP)-associated complex. Alcohol Clin Exp Res. 2014;38(11):2743–53.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yeligar S, Tsukamoto H, Kalra VK. Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1alpha and microrNA-199. J Immunol. 2009;183(8):5232–43.

    CrossRef  CAS  PubMed  Google Scholar 

  107. Neuman MG, et al. Alcoholic liver disease: role of cytokines. Biomol Ther. 2015;5(3):2023–34.

    CAS  Google Scholar 

  108. Casafont Morencos F, et al. Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig Dis Sci. 1996;41(3):552–6.

    CrossRef  CAS  PubMed  Google Scholar 

  109. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146(6):1513–24.

    CrossRef  CAS  PubMed  Google Scholar 

  110. Chen P, et al. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology. 2015;61(3):883–94.

    CrossRef  CAS  PubMed  Google Scholar 

  111. O'Connell RM, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104(5):1604–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lippai D, et al. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res. 2014;38(8):2217–24.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bala S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56(5):1946–57.

    CrossRef  CAS  PubMed  Google Scholar 

  114. Girard M, et al. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol. 2008;48(4):648–56.

    CrossRef  CAS  PubMed  Google Scholar 

  115. Raver-Shapira N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26(5):731–43.

    CrossRef  CAS  PubMed  Google Scholar 

  116. Ambade A, Satishchandran A, Szabo G. Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1alpha activation. Sci Rep. 2016;6:21340.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  117. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–1273.e1.

    CrossRef  PubMed  Google Scholar 

  118. Russo A, Potenza N. Antiviral effects of human microRNAs and conservation of their target sites. FEBS Lett. 2011;585(16):2551–5.

    CrossRef  CAS  PubMed  Google Scholar 

  119. Ura S, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology. 2009;49(4):1098–112.

    CrossRef  CAS  PubMed  Google Scholar 

  120. Geller SA. Hepatitis B and hepatitis C. Clin Liver Dis. 2002;6(2):317–34. v

    CrossRef  PubMed  Google Scholar 

  121. Ramachandran S, et al. Hepatitis C virus induced miR200c down modulates FAP-1, a negative regulator of Src signaling and promotes hepatic fibrosis. PLoS One. 2013;8(8):e70744.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ren M, et al. Correlation between hepatitis B virus protein and microRNA processor Drosha in cells expressing HBV. Antivir Res. 2012;94(3):225–31.

    CrossRef  CAS  PubMed  Google Scholar 

  123. Chen W, et al. HCV core protein interacts with Dicer to antagonize RNA silencing. Virus Res. 2008;133(2):250–8.

    CrossRef  CAS  PubMed  Google Scholar 

  124. Wang Y, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 2010;53(1):57–66.

    CrossRef  CAS  PubMed  Google Scholar 

  125. Kong G, et al. Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS One. 2011;6(5):e19518.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  126. Guo H, et al. MicroRNAs-372/373 promote the expression of hepatitis B virus through the targeting of nuclear factor I/B. Hepatology. 2011;54(3):808–19.

    CrossRef  CAS  PubMed  Google Scholar 

  127. Jin J, et al. MicroRNA-501 promotes HBV replication by targeting HBXIP. Biochem Biophys Res Commun. 2013;430(4):1228–33.

    CrossRef  CAS  PubMed  Google Scholar 

  128. Wang Y, et al. Hepatitis B viral RNA directly mediates down-regulation of the tumor suppressor microRNA miR-15a/miR-16-1 in hepatocytes. J Biol Chem. 2013;288(25):18484–93.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jung YJ, et al. c-Myc-mediated overexpression of miR-17-92 suppresses replication of hepatitis B virus in human hepatoma cells. J Med Virol. 2013;85(6):969–78.

    CrossRef  CAS  PubMed  Google Scholar 

  130. Banaudha K, et al. MicroRNA silencing of tumor suppressor DLC-1 promotes efficient hepatitis C virus replication in primary human hepatocytes. Hepatology. 2011;53(1):53–61.

    CrossRef  CAS  PubMed  Google Scholar 

  131. Liu X, et al. Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology. 2010;398(1):57–67.

    CrossRef  CAS  PubMed  Google Scholar 

  132. Zhang X, et al. Modulation of hepatitis B virus replication and hepatocyte differentiation by MicroRNA-1. Hepatology. 2011;53(5):1476–85.

    CrossRef  CAS  PubMed  Google Scholar 

  133. Shirasaki T, et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol. 2013;87(9):5270–86.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang S, et al. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1)-modulated P53 activity. Hepatology. 2012;55(3):730–41.

    CrossRef  CAS  PubMed  Google Scholar 

  135. Song K, et al. Epigenetic regulation of MicroRNA-122 by peroxisome proliferator activated receptor-gamma and hepatitis B virus X protein in hepatocellular carcinoma cells. Hepatology. 2013;58(5):1681–92.

    CrossRef  CAS  PubMed  Google Scholar 

  136. Jopling CL, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–81.

    CrossRef  CAS  PubMed  Google Scholar 

  137. van der Meer AJ, et al. Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122. J Viral Hepat. 2013;20(3):158–66.

    CrossRef  PubMed  Google Scholar 

  138. Jangra RK, Yi M, Lemon SM. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol. 2010;84(13):6615–25.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cox EM, et al. Enhancement of hepatitis C viral RNA abundance by precursor miR-122 molecules. RNA. 2013;19(12):1825–32.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mortimer SA, Doudna JA. Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Nucleic Acids Res. 2013;41(7):4230–40.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  141. Spaniel C, et al. microRNA-122 abundance in hepatocellular carcinoma and non-tumor liver tissue from Japanese patients with persistent HCV versus HBV infection. PLoS One. 2013;8(10):e76867.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    CrossRef  PubMed  Google Scholar 

  143. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    CrossRef  CAS  PubMed  Google Scholar 

  144. Anthony PP. Hepatocellular carcinoma: an overview. Histopathology. 2001;39(2):109–18.

    CrossRef  CAS  PubMed  Google Scholar 

  145. Rahbari NN, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149(5):713–24.

    CrossRef  PubMed  Google Scholar 

  146. Thurnherr T, et al. Differentially expressed miRNAs in hepatocellular carcinoma target genes in the genetic information processing and metabolism pathways. Sci Rep. 2016;6:20065.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kota J, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  149. Su H, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69(3):1135–42.

    CrossRef  CAS  PubMed  Google Scholar 

  150. Zhang J, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 2010;103(8):1215–20.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li D, et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem. 2011;286(42):36677–85.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu Y, et al. VCP/p97, down-regulated by microRNA-129-5p, could regulate the progression of hepatocellular carcinoma. PLoS One. 2012;7(4):e35800.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pineau P, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(1):264–9.

    CrossRef  CAS  PubMed  Google Scholar 

  154. Hou J, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19(2):232–43.

    CrossRef  CAS  PubMed  Google Scholar 

  155. Coulouarn C, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tsai WC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49(5):1571–82.

    CrossRef  CAS  PubMed  Google Scholar 

  157. Bai S, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284(46):32015–27.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin CJ, et al. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008;375(3):315–20.

    CrossRef  CAS  PubMed  Google Scholar 

  159. Gramantieri L, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007;67(13):6092–9.

    CrossRef  CAS  PubMed  Google Scholar 

  160. Fornari F, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27(43):5651–61.

    CrossRef  CAS  PubMed  Google Scholar 

  161. Xu T, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50(1):113–21.

    CrossRef  CAS  PubMed  Google Scholar 

  162. Datta J, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 2008;68(13):5049–58.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li N, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275(1):44–53.

    CrossRef  CAS  PubMed  Google Scholar 

  164. Salvi A, et al. MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J. 2009;276(11):2966–82.

    CrossRef  CAS  PubMed  Google Scholar 

  165. Li S, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology. 2009;49(4):1194–202.

    CrossRef  CAS  PubMed  Google Scholar 

  166. Wong QW, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology. 2008;135(1):257–69.

    CrossRef  CAS  PubMed  Google Scholar 

  167. Curmi PA, et al. Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer. 2000;82(1):142–50.

    CrossRef  CAS  PubMed  Google Scholar 

  168. Ghosh R, et al. Increased expression and differential phosphorylation of stathmin may promote prostate cancer progression. Prostate. 2007;67(10):1038–52.

    CrossRef  CAS  PubMed  Google Scholar 

  169. Mistry SJ, A. Bank, Atweh GF. Targeting stathmin in prostate cancer. Mol Cancer Ther. 2005;4(12):1821–9.

    CrossRef  CAS  PubMed  Google Scholar 

  170. Shah YM, et al. Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol. 2007;27(12):4238–47.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang H, et al. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27(2):594–8.

    CAS  PubMed  Google Scholar 

  172. Li Y, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100(7):1234–42.

    CrossRef  CAS  PubMed  Google Scholar 

  173. Meng F, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    CrossRef  CAS  PubMed  Google Scholar 

  174. Gramantieri L, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15(16):5073–81.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang B, et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50(4):1152–61.

    CrossRef  CAS  PubMed  Google Scholar 

  176. Zhang X, et al. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50(2):490–9.

    CrossRef  CAS  PubMed  Google Scholar 

  177. Reuben A, Koch DG, Lee WM. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 2010;52(6):2065–76.

    CrossRef  PubMed  Google Scholar 

  178. Chalasani N, Bjornsson E. Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology. 2010;138(7):2246–59.

    CrossRef  CAS  PubMed  Google Scholar 

  179. Daly AK, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9.

    CrossRef  CAS  PubMed  Google Scholar 

  180. Ward J, et al. Plasma microRNA profiles distinguish lethal injury in acetaminophen toxicity: a research study. World J Gastroenterol. 2012;18(22):2798–804.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li LM, Wang D, Zen K. MicroRNAs in drug-induced liver injury. J Clin Transl Hepatol. 2014;2(3):162–9.

    PubMed  PubMed Central  Google Scholar 

  182. Starckx S, et al. Evaluation of miR-122 and other biomarkers in distinct acute liver injury in rats. Toxicol Pathol. 2013;41(5):795–804.

    CrossRef  CAS  PubMed  Google Scholar 

  183. Thulin P, et al. Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver Int. 2014;34(3):367–78.

    CrossRef  CAS  PubMed  Google Scholar 

  184. Antoine DJ, et al. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 2013;58(2):777–87.

    CrossRef  CAS  PubMed  Google Scholar 

  185. Dear JW, et al. Early detection of paracetamol toxicity using circulating liver microRNA and markers of cell necrosis. Br J Clin Pharmacol. 2014;77(5):904–5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gallego JA, et al. In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci. 2012;47(2):243–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  187. Alevizos I, Illei GG. MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol. 2010;6(7):391–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  188. Frampton AE, et al. Towards a clinical use of miRNAs in pancreatic cancer biopsies. Expert Rev Mol Diagn. 2013;13(1):31–4.

    CrossRef  CAS  PubMed  Google Scholar 

  189. Weber JA, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  190. Armistead D, et al. Systems biology analysis of non-alcoholic steatohepatitis related miRNA expression. Hepatology. 2012;56(S1):266A. Abstract 147

    Google Scholar 

  191. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51.

    CrossRef  CAS  PubMed  Google Scholar 

  192. Garcia JM, et al. Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. RNA. 2008;14(7):1424–32.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bolukbasi MF, et al. miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids. 2012;1:e10.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  194. Arroyo JD, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang L, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26.

    CrossRef  CAS  PubMed  Google Scholar 

  196. Tryndyak VP, et al. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. Toxicol Appl Pharmacol. 2012;262(1):52–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ji F, et al. Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat. 2011;18(7):e242–51.

    CrossRef  CAS  PubMed  Google Scholar 

  198. Bala S, et al. Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J Transl Med. 2012;10:151.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jin Y, et al. MiR-122 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Snail1 and Snail2 and suppressing WNT/beta-cadherin signaling pathway. Exp Cell Res. 2017;360(2):210–7.

    CrossRef  CAS  PubMed  Google Scholar 

  200. Wang N, et al. Downregulation of microRNA-122 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by activating epithelial-mesenchymal transition. Onco Targets Ther. 2016;9:2035–47.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  201. Koberle V, et al. Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Eur J Cancer. 2013;49(16):3442–9.

    CrossRef  PubMed  CAS  Google Scholar 

  202. Riad SE, et al. Expression signature of microRNA-155 in hepatitis C virus genotype 4 infection. Biomed Rep. 2015;3(1):93–7.

    CrossRef  PubMed  Google Scholar 

  203. Cheng YQ, et al. MicroRNA-155 regulates interferon-gamma production in natural killer cells via Tim-3 signalling in chronic hepatitis C virus infection. Immunology. 2015;145(4):485–97.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li LM, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70(23):9798–807.

    CrossRef  CAS  PubMed  Google Scholar 

  205. Tomimaru Y, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56(1):167–75.

    CrossRef  CAS  PubMed  Google Scholar 

  206. Jia HY, et al. MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells. Int J Mol Sci. 2012;13(7):8762–74.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yang Z, et al. Identification of recurrence related microRNAs in hepatocellular carcinoma after surgical resection. Int J Mol Sci. 2013;14(1):1105–18.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  208. Xu J, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011;50(2):136–42.

    CrossRef  CAS  PubMed  Google Scholar 

  209. Xin M, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chau BN, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra18.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ema Anastasiadou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Georgiou, S., Pantazopoulou, V., Anastasiadou, E. (2019). The Role of microRNAs in the Gut-Liver Axis. In: Krag, A., Hansen, T. (eds) The Human Gut-Liver-Axis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-98890-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98890-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98889-4

  • Online ISBN: 978-3-319-98890-0

  • eBook Packages: MedicineMedicine (R0)