Skip to main content

Virtual Reality Learning Environments in Materials Engineering: Rockwell Hardness Test

  • Conference paper
  • First Online:
Methodologies and Intelligent Systems for Technology Enhanced Learning, 8th International Conference (MIS4TEL 2018)

Abstract

The use of advanced Information and Communications Technology (ICT) is becoming really important in teaching-learning activities. This is especially relevant within the field of engineering where many teachers are beginning to use sophisticated virtual laboratories (VL) and computer applications in the classroom. Indeed, results of many teaching experiences validate the usefulness of such virtual tools due to their high efficiency in the teaching-learning process. However, some of the ICT tools and applications used in engineering education are becoming excessively complex and require extensive training to use them, which may be even more difficult than the knowledge they wish to teach. This communication deals with the development of new teaching technologies used in Materials Science and Engineering, specifically a VL based on the step-by-step performance of a Rockwell hardness testing machine. To achieve this goal, a realistic 3D scenario based on non-immersive virtual reality design −similar to the usual videogame environments − is used to increase students’ motivation regarding the study of hardness testing of metals. Like any virtual tool which begins to be used, some changes or potential areas of improvement will arise when applied in the classroom during the subsequent years. Any improvement should take into account students’ opinions and also consider that a virtual tool must be implemented within an appropriate teaching methodology with an educational aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heradio, R., de la Torre, L., Galán, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016)

    Article  Google Scholar 

  2. Vergara, D., Lorenzo, M., Rubio, M.P.: On the use of virtual environments in engineering education. Int. J. Qual. Assur. Eng. Technol. Educ. 5(2), 30–41 (2016)

    Article  Google Scholar 

  3. García, J., Entrialgo, J.: Using computer virtualization and software tools to implement a low cost laboratory for the teaching of storage area networks. Comput. Appl. Eng. Educ. 23, 715–723 (2015)

    Article  Google Scholar 

  4. Hilfert, T., König, M.: Low-cost virtual reality environment for engineering and construction. Vis. Eng. 4, 1–18 (2016)

    Article  Google Scholar 

  5. Vergara, D., Rubio, M.P., Prieto, F., Lorenzo, M.: Enhancing the teaching/learning of materials mechanical characterization by using virtual reality. J. Mater. Educ. 38, 63–74 (2016)

    Google Scholar 

  6. Vergara, D., Rodríguez, M., Rubio, M.P., Ferrer, J., Núñez, F.J., Moralejo, L.: Formación de personal técnico en ensayos no destructivos por ultrasonidos mediante realidad virtual. Dyna 93(2), 150–154 (2018)

    Article  Google Scholar 

  7. Vergara, D., Rubio, M.P., Lorenzo, M.: New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 143(2) (2017). paper 05016009

    Article  Google Scholar 

  8. Boukerche, A., Al Hamidi, A., Pazzi, R., Ahmad, L.: Architectural design for the 3D virtual radiology department using virtual reality technology. In: IEEE Workshop on Computational Intelligence in Virtual Environments, pp. 45–52 (2009)

    Google Scholar 

  9. Vergara, D., Rubio, M.P.: The application of didactic virtual tools in the instruction of industrial radiography. J. Mater. Educ. 37(1–2), 17–26 (2015)

    Google Scholar 

  10. Xie, Q., Tinker, R.: Molecular dynamics simulations of chemical reactions for use in education. J. Chem. Educ. 83(1), 77–83 (2006)

    Article  Google Scholar 

  11. Dobrzański, L.A., Honysz, R.: On the implementation of virtual machines in computer aided education. J. Mater. Educ. 31(1–2), 131–140 (2009)

    Google Scholar 

  12. Koretsky, M.D., Kelly, Ch.: Industrially situated virtual laboratories. Chem. Eng. Educ. 45(3), 219–228 (2011)

    Google Scholar 

  13. Autodesk 3D Studio MAX: www.autodesk.com/products/3ds-max/overview. Accessed 01 Feb 2018

  14. Unreal Engine 4: www.unrealengine.com. Accessed 01 Feb 2018

  15. Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Signal Process. 119, 115–127 (2016). https://doi.org/10.1016/j.sigpro.2015.07.013

    Article  Google Scholar 

  16. Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015). https://doi.org/10.1016/j.amc.2015.08.059

    Article  Google Scholar 

  17. Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., De Las Casas, M.L.M., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. 2015, 14 (2015). https://doi.org/10.1155/2015/168682

    Article  Google Scholar 

  18. Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017). https://doi.org/10.1007/978-3-319-60819-8_3

    Google Scholar 

  19. Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014)

    Google Scholar 

  20. Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2014). https://doi.org/10.1016/j.eswa.2013.08.003

    Article  Google Scholar 

  21. De La Prieta, F., Navarro, M., García, J.A., González, R., Rodríguez, S.: Multi-agent system for controlling a cloud computing environment. In: LNCS (LNAI and LNBI), (vol. 8154 LNAI). https://doi.org/10.1007/978-3-642-40669-0_2

    Chapter  Google Scholar 

  22. Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient Intelligence systems. Inf. Sci. 222, 47–65 (2013). https://doi.org/10.1016/j.ins.2011.05.002

    Article  Google Scholar 

  23. Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012). https://doi.org/10.1093/jigpal/jzr021

    Article  MathSciNet  Google Scholar 

  24. Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: LNCS (LNAI and LNBI), (vol. 6077 LNAI) (2010). https://doi.org/10.1007/978-3-642-13803-4_12

    Google Scholar 

  25. Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: Proceedings of the INES 2010 - 14th International Conference on Intelligent Engineering Systems (2010). https://doi.org/10.1109/INES.2010.5483855

  26. Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010). https://doi.org/10.1016/j.ins.2009.12.032

    Article  Google Scholar 

  27. Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for Alzheimer health care. Int. J. Ambient Comput. Intell. 1(1), 15–26 (2009). https://doi.org/10.4018/jaci.2009010102

    Article  Google Scholar 

  28. Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009). https://doi.org/10.1016/j.eswa.2008.10.003

    Article  Google Scholar 

  29. Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10, 187 (2009). https://doi.org/10.1186/1471-2105-10-187

    Article  Google Scholar 

  30. Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007). https://doi.org/10.1109/tsmcc.2006.876058

    Article  Google Scholar 

  31. Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: LNCS (LNAI and LNBI), (vol. 4065 LNAI), pp. 106–120 (2006)

    Chapter  Google Scholar 

  32. Fdez-Rtverola, F., Corchado, J.M.: FSfRT: Forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004). https://doi.org/10.1023/b:apin.0000043558.52701.b1

    Article  Google Scholar 

  33. Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: LNCS (LNAI and LNBI), vol. 3155, pp. 547–559 (2004). https://doi.org/10.1007/978-3-540-28631-8

  34. Laza, R., Pavón, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. In: LNCS (LNAI and LNBI), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the ocean’s CO2 budget with a CoHeL-IBR system. In: Proceedings of the Advances in Case-Based Reasoning, vol. 3155, pp. 533–546 (2004)

    Google Scholar 

  36. Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004). https://doi.org/10.1007/978-3-540-30185-1_1

    Google Scholar 

  37. Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood Hebbian learning based retrieval method for CBR systems. In: LNCS (LNAI and LNBI), vol. 2689, pp. 107–121 (2003). https://doi.org/10.1007/3-540-45006-8_11

  38. Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl. Based Syst. 16(5–6 SPEC), 321–328 (2003). https://doi.org/10.1016/S0950-7051(03)00034-0

    Article  Google Scholar 

  39. Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3), 173–185 (2002)

    Google Scholar 

  40. Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4), 307–313 (2002). https://doi.org/10.1109/tsmcc.2002.806072

    Article  Google Scholar 

  41. Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001). https://doi.org/10.1002/int.1024

    Article  MATH  Google Scholar 

  42. Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 351–357 (1999). https://doi.org/10.1016/s0954-1810(99)00007-2

    Article  Google Scholar 

  43. Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr), (Cat. No.98TH8367), pp. 259–263 (1998). https://doi.org/10.1109/CIFER.1998.690316

  44. Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng. 18(12), 1913–1939 (2017)

    Article  Google Scholar 

  45. Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 17(12), 2707 (2017)

    Article  Google Scholar 

  46. Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl Based Syst. 137, 54–64 (2017)

    Article  Google Scholar 

  47. Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017, Article no. 8071410 (2017)

    Google Scholar 

  48. Oliver, M., Molina, J.P., Fernández-Caballero, A., González, P.: Collaborative computer-assisted cognitive rehabilitation system. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(3), 57–74 (2017). ISSN 2255-2863

    Google Scholar 

  49. Ueno, M., Suenaga, M., Isahara, H.: Classification of two comic books based on convolutional neural networks. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(1), 5–12 (2017). ISSN 2255-2863

    Google Scholar 

  50. Silveira, R., Da Silva, G.K., Bitencourt, T., Gelaim, A., Marchi, J., De La Prieta, F.: Towards a model of open and reliable cognitive multiagent systems: dealing with trust and emotions. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3), 57–86 (2015). ISSN 2255-2863

    Google Scholar 

  51. Chamoso, P., De La Prieta, F.: Simulation environment for algorithms and agents evaluation. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3), 87–96 (2015). ISSN 2255-2863

    Google Scholar 

Download references

Acknowledgments

This work has been supported by project “IOTEC: Development of Technological Capacities around the Industrial Application of Internet of Things (IoT)”. 0123_IOTEC_3_E. Project financed with FEDER funds, Interreg Spain-Portugal (PocTep).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. P. Rubio or S. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubio, M.P., Vergara, D., Rodríguez, S., Extremera, J. (2019). Virtual Reality Learning Environments in Materials Engineering: Rockwell Hardness Test. In: Di Mascio, T., et al. Methodologies and Intelligent Systems for Technology Enhanced Learning, 8th International Conference. MIS4TEL 2018. Advances in Intelligent Systems and Computing, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-98872-6_13

Download citation

Publish with us

Policies and ethics