Skip to main content

Accelerometry-Based Physical Activity Assessment for Children and Adolescents

  • Chapter
  • First Online:
Instruments for Health Surveys in Children and Adolescents

Abstract

Accurate assessment of physical activity (PA) is important to study the associations between PA and health outcomes, to evaluate the effectiveness of interventions and to derive public health recommendations. Despite limitations, accelerometry-based methods generate the best available measures for epidemiological research involving a large number of children and adults. In this chapter, we review the most important methodological issues pertaining to the use of accelerometers to assess the overall volume of PA. We stress the importance of recording and keeping the raw data whenever possible. We review the validation studies using accelerometry to determine energy expenditure and calibration studies that attempt to derive thresholds (“cut-offs”) for differentiating between activity intensity categories. Conceptual and measurement issues due to the use of different thresholds are reviewed, as well as the temporal resolution issues such as sampling rate and epoch length. Different wear time detection algorithms and inclusion criteria are reviewed as well as options in data reduction (deriving meaningful variables from accelerometer data). We present an R package automatising most of the steps in accelerometer data analysis. The chapter concludes with some insights into the future of accelerometry given the wearable revolution and logistical considerations in using accelerometers in large field studies.

On behalf of the IDEFICS and I.Family consortia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens W, Bammann K, Siani A, Buchecker K, De Henauw S, Iacoviello L, et al. IDEFICS consortium. The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond). 2011;35(Suppl 1):S3–15.

    Article  Google Scholar 

  • Ahrens W, Siani A, Adan R, De Henauw S, Eiben G, Gwozdz W, et al. I. Family consortium. Cohort profile: the transition from childhood to adolescence in European children—how I.Family extends the IDEFICS cohort. Int J Epidemiol. 2017;46(5):1394–5j.

    Google Scholar 

  • Alhassan S, Lyden K, Howe C, Kozey Keadle S, Nwaokelemeh O, Freedson PS. Accuracy of accelerometer regression models in predicting energy expenditure and METs in children and youth. Pediatr Exerc Sci. 2012;24(4):519–36.

    Article  Google Scholar 

  • Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport. 2015;18:294–8.

    Article  Google Scholar 

  • Bammann K, Sioen I, Huybrechts I, Casajús J, Vicente-Rodríguez G, Cuthill R, et al. IDEFICS consortium. The IDEFICS validation study on field methods for assessing physical activity and body composition in children: design and data collection. Int J Obes (Lond). 2011;35(Suppl 1):S79–87.

    Article  Google Scholar 

  • Bammann K, Peplies J, Sjöström M, Lissner L, De Henauw S, Galli C, et al. IDEFICS consortium. Assessment of diet, physical activity and biological, social and environmental factors in a multi-centre European project on diet- and lifestyle-related disorders in children (IDEFICS). J Pub Health. 2006;14(5):279–89.

    Article  Google Scholar 

  • Barlow SE, Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.

    Article  Google Scholar 

  • Barnett LM, van Beurden E, Morgan PJ, Brooks LO, Beard JR. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adoles Health. 2009;44(3):252–9.

    Article  Google Scholar 

  • Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997;44(3):136–47.

    Article  Google Scholar 

  • Brazendale K, Beets MW, Bornstein DB, Moore JB, Pate RR, Weaver RG, et al. Equating accelerometer estimates among youth: the Rosetta Stone 2. J Sci Med Sport. 2016;19(3):242–9.

    Article  Google Scholar 

  • Brennan RL. Generalizability theory. New York: Springer; 2001.

    Book  MATH  Google Scholar 

  • Buck C, Kneib T, Tkaczick T, Konstabel K, Pigeot I. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale. Int J Health Geogr. 2015a;22:14–35.

    Google Scholar 

  • Buck C, Tkaczick T, Pitsiladis Y, De Bourdehaudhuij I, Reisch L, Ahrens W, et al. Objective measures of the built environment and physical activity in children: from walkability to moveability. J Urban Health. 2015b;92(1):24–38.

    Article  Google Scholar 

  • Bull FC, Expert working groups. Physical activity guidelines in the U.K.: review and recommendations. School of Sport, Exercise and Health Sciences, Loughborough University. 2010. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213743/dh_128255.pdf. Accessed 8 Feb 2018.

  • Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46(6):1216–26.

    Article  Google Scholar 

  • Byrd-Williams CE, Belcher BR, Spruijt-Metz D, Davis JN, Ventura EE, Kelly L, et al. Increased physical activity and reduced adiposity in overweight Hispanic adolescents. Med Sci Sports Exerc. 2010;42:478–84.

    Article  Google Scholar 

  • Carter J, Wilkinson D, Blacker S, Rayson M, Bilzon J, Izard R, et al. An investigation of a novel three-dimensional activity monitor to predict free-living energy expenditure. J Sports Sci. 2008;26(6):553–61.

    Article  Google Scholar 

  • Caspersen CJ, Powell KE, Chistenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–31.

    Google Scholar 

  • Chen KY, Janz KF, Zhu W, Brychta RJ. Redefining the roles of sensors in objective physical activity monitoring. Med Sci Sports Exerc. 2012;44:S13–23.

    Article  Google Scholar 

  • Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011a;43(2):357–64.

    Article  Google Scholar 

  • Choi L, Liu Z, Matthews CE, Buchowski MS. Physical activity: process physical activity accelerometer data. R package version 0.1–1. 2011b. https://CRAN.R-project.org/package=PhysicalActivity. Accessed 3 May 2018.

  • Choi L, Ward SC, Schnelle JF, Buchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44(10):2009–16.

    Article  Google Scholar 

  • Chomistek AK, Yuan C, Matthews CE, Troiano RP, Bowles HR, Rood J, et al. Physical activity assessment with the ActiGraph GT3X and doubly labeled water. Med Sci Sports Exerc. 2017;49(9):1935–44.

    Article  Google Scholar 

  • Corder K, Ekelund U, Steele RM, Wareham NJ, Søren Brage S. Assessment of physical activity in adolescents. J Appl Physiol. 2008;105:977–87.

    Article  Google Scholar 

  • Crouter SE, Bassett DR Jr. A new 2-regression model for the Actical accelerometer. Br J Sports Med. 2008;42(3):217–24.

    Article  Google Scholar 

  • Crouter SE, Horton M, Bassett DR. Use of a 2-regression model for estimating energy expenditure in children. Med Sci Sports Exerc. 2012;44(6):1177–85.

    Article  Google Scholar 

  • de Almeida Mendes M, da Silva ICM, Ramires VV, Reichert FF, Martins RC, Tomasi E. Calibration of raw accelerometer data to measure physical activity: a systematic review. Gait Posture. 2018;61:98–110.

    Article  Google Scholar 

  • de Meester F, De Bourdeaudhuij I, Deforche B, Ottevaere C, Cardon G. Measuring physical activity using accelerometry in 13–15-year-old adolescents: the importance of including non-wear activities. Public Health Nutr. 2011;14(12):2124–33.

    Article  Google Scholar 

  • de Vet E, Verkooijen KT. Self-control and physical activity. Disentangling the pathways to health. In: de Ridder D, Adriaanse M, Fujita K, editors. The Routledge international handbook of self-control in health and well-being. London: Routledge; 2018. p. 276–87.

    Google Scholar 

  • Dencker M, Andersen LB. Health-related aspects of objectively measured daily PA in children. J Sports Med. 2008;28:133–44.

    Google Scholar 

  • Dieu O, Mikulovic J, Fardy PS, Bui-Xuan G, Béghin L, Vanhelst J. Physical activity using wrist-worn accelerometers: comparison of dominant and non-dominant wrist. Clin Physiol Funct Imaging. 2017;37(5):525–9.

    Article  Google Scholar 

  • Dössegger A, Ruch N, Jimmy G, Braun-Fahrländer C, Mäder U, Hänggi J, et al. Reactivity to accelerometer measurement of children and adolescents. Med Sci Sports Exerc. 2014;46(6):1140–6.

    Article  Google Scholar 

  • Edwardson CL, Gorely T. Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc. 2010;42(5):928–34.

    Article  Google Scholar 

  • Ekblom O, Oddsson K, Ekblom B. Prevalence and regional differences in overweight in 2001 and trends in BMI distribution in Swedish children from 1987 to 2001. Scan J Public Health. 2004;32:257–63.

    Article  Google Scholar 

  • Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Appl Physiol Nutr Metab. 2007;32:195–207.

    Article  Google Scholar 

  • Evenson KR, Cattellier D, Gill K, Ondrak K, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.

    Article  Google Scholar 

  • Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37:523–30.

    Article  Google Scholar 

  • Fudge BW, Wilson J, Easton C, Irwin L, Clark J, Haddow O, et al. Estimation of oxygen uptake during fast running using accelerometry and heart rate. Med Sci Sports Exerc. 2007;39:192–8.

    Article  Google Scholar 

  • Gabriel KP, McClain JJ, Schmid KK, Storti KL, High RR, Underwood DA, et al. Issues in accelerometer methodology: the role of epoch length on estimates of physical activity and relationships with health outcomes in overweight, post-menopausal women. Int J Beh Nutr Phy Activ. 2010;7:53.

    Article  Google Scholar 

  • Garaulet M, Martinez-Nicolas A, Ruiz JR, Konstabel K, Labayen I, González-Gross M, et al. HELENA study group. Fragmentation of daily rhythms associates with obesity and cardiorespiratory fitness in adolescents: the HELENA study. Clin Nutr. 2017;36(6):1558–66.

    Article  Google Scholar 

  • Gorber SC, Tremblay MS. Self-report and direct measures of health: bias and implications. In: Shephard RJ, Tudor-Locke C, editors. The objective monitoring of physical activity: contributions of accelerometry to epidemiology, exercise science and rehabilitation. New York: Springer; 2016. p. 369–76.

    Chapter  Google Scholar 

  • Guinhouya BC, Hubert H, Zitouni D. Need for unbiased computation of the moderate-intensity physical activity of youth in epidemiologic studies. Am J Prev Med. 2011;41(1):e1–2.

    Article  Google Scholar 

  • Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol. 2012;8(1):23–34.

    Article  Google Scholar 

  • Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time—beneficial associations with metabolic risk. Diabetes Care. 2008;31:661–6.

    Article  Google Scholar 

  • Hislop JF, Bulley C, Mercer TH, Reilly JJ. Comparison of accelerometry cut points for physical activity and sedentary behavior in preschool children: a validation study. Pediatr Exerc Sci. 2012;24(4):563–76.

    Article  Google Scholar 

  • Horner F, Bilzon JL, Rayson M, Blacker S, Richmond V, Carter J, et al. Development of an accelerometer-based multivariate model to predict free-living energy expenditure in a large military cohort. J Sports Sci. 2013;31(4):354–60.

    Article  Google Scholar 

  • Horner FE, Rayson MP, Bilzon JLJ. Reliability and validity of the 3DNX accelerometer during mechanical and human treadmill exercise testing. Int J Obes (Lond). 2011;35(Suppl 1):S88–97.

    Article  Google Scholar 

  • Howe CA, Staudenmayer JW, Freedson PS. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009;41(12):2199–206.

    Article  Google Scholar 

  • Ihaka R, Gentleman R. R: A language for data analysis and graphics. J Comput Graph Stat. 1996;5:299–314.

    Google Scholar 

  • Jakicic JM, Otto DA. Physical activity considerations for the treatment and prevention of obesity. Am J Clin Nutr. 2005;82(Suppl 1):226S–9S.

    Article  Google Scholar 

  • Janssen X, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, Adamson AJ, et al. Gateshead millennium study core team. Objective measurement of sedentary behavior: impact of non-wear time rules on changes in sedentary time. BMC Public Health. 2015;23:504.

    Article  Google Scholar 

  • John D, Freedson P. Actigraph and actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012;44:S86–9.

    Article  Google Scholar 

  • John D, Tyo B, Bassett DR. Comparison of four ActiGraph accelerometers during walking and running. Med Sci Sports Exerc. 2010;42(2):368–74.

    Article  Google Scholar 

  • Kitamura K, Nemoto T, Sato N, Chen W. Development of a new accelerometer-based physical activity-monitoring system using a high-frequency sampling rate. Biol Sci Space. 2009;23:77–83.

    Article  Google Scholar 

  • Kolle E, Steene-Johannessen J, Andersen LB, Anderssen SA. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a cross-sectional study. Int J Behav Nutr Phys Act. 2009;6:36.

    Article  Google Scholar 

  • Konstabel K, Mäestu J, Rääsk T, Lätt E, Jürimäe J. Decline in light-intensity activity is a major component of the longitudinal decline in physical activity in adolescent boys. Acta Paediatr. 2017;106(Suppl 470):24.

    Google Scholar 

  • Konstabel K, Veidebaum T, Verbestel V, Moreno LA, Bammann K, Tornaritis M, et al. IDEFICS consortium. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes (Lond). 2014;38(Suppl 2):S135–43.

    Article  Google Scholar 

  • Konstabel K. accelerate: an R package for accelerometry data analysis version 1.0.1. 2018. https://osf.io/s42a3/.

  • Kyröläinen H, Belli A, Komi PV. Biomechanical factors affecting running economy. Med Sci Sports Exerc. 2001;33:1330–7.

    Article  Google Scholar 

  • Lee IM, Skerrett PJ. Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc. 2001;33:459–71.

    Article  Google Scholar 

  • Levine JA. Non-exercise activity thermogenesis (NEAT). Nutr Rev. 2004;62:S82–97.

    Article  Google Scholar 

  • Lin SY, Lai YC, Hsia CC, Su PF, Chang CH. Validation of energy expenditure prediction modelling using real-time shoe-based motion detectors. IEEE Trans Biomed Eng. 2016;64:2152–62.

    Article  Google Scholar 

  • Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents. Review of associated health benefits. Sports Med. 2010;40(12):1019–35.

    Article  Google Scholar 

  • Manohar C, McCrady S, Pavlidis IT, Levine JA. An accelerometer-based earpiece to monitor and quantify physical activity. J Phys Act Health. 2009;6(6):781–9.

    Article  Google Scholar 

  • Manohar CU, McCrady SK, Fujiki Y, Pavlidis IT, Levine JA. Evaluation of the accuracy of a triaxial accelerometer embedded into a cell phone platform for measuring physical activity. J Obes Weight Loss Ther. 2011;1(106):3309.

    Google Scholar 

  • Mark AE, Janssen I. Influence of bouts of physical activity on overweight in youth. Am J Prev Med. 2009;36(5):416–21.

    Article  Google Scholar 

  • Martin JB, Krč KM, Mitchell EA, Eng JJ, Noble JW. Pedometer accuracy in slow walking older adults. Int J Ther Rehabil. 2012;19(7):387–93.

    Article  Google Scholar 

  • Martinez-Gomez D, Ruiz JR, Ortega FB. Author response. Am J Prev Med. 2011;41(1):e2–3.

    Article  Google Scholar 

  • Mattocks C, Leary S, Ness A, Deere K, Saunders J, Tilling K, et al. Calibration of an accelerometer during free-living activities in children. Int J Pediatr Obes. 2007;2:218–26.

    Article  Google Scholar 

  • McClain JJ, Abraham TL, Brusseau TA Jr, Tudor-Locke C. Epoch length and accelerometer outputs in children: comparison to direct observation. Med Sci Sports Exerc. 2008;40(12):2080–7.

    Article  Google Scholar 

  • Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45.

    Article  Google Scholar 

  • Miles L. Physical activity and health. Nutr Bull. 2007;32:314–63.

    Article  Google Scholar 

  • Miller J, Rosenbloom A, Silverstein J. Childhood obesity. J Clin Endocrinol Metab. 2004;89:4211–8.

    Article  Google Scholar 

  • Montoye AHK, Dong B, Biswas S, Pfeiffer KA. Validation of a wireless accelerometer network for energy expenditure measurement. J Sports Sci. 2016;34(21):2130–9.

    Article  Google Scholar 

  • Mossberg H. 40-year follow-up of overweight children. Lancet. 1989;26:491–3.

    Article  Google Scholar 

  • Ojiambo R, Cuthill R, Budd H, Konstabel K, Casajus JA, Gonzalez-Agüero A, et al. IDEFICS consortium. Impact of methodological decisions on accelerometer outcome variables in young children. Int J Obes (Lond). 2011;35(Suppl 1):S98–103.

    Article  Google Scholar 

  • Ojiambo R, Gibson AR, Konstabel K, Lieberman DE, Speakman JR, Reilly JJ, et al. Free-living physical activity and energy expenditure of rural children and adolescents in the Nandi region of Kenya. Ann Hum Biol. 2013;40(4):318–23.

    Article  Google Scholar 

  • Ojiambo RM, Konstabel K, Veidebaum T, Reilly JJ, Verbestel V, Casajús JA, et al. IDEFICS consortium. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring versus triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS validation study. J Appl Physiol. 2012;113(10):1530–6.

    Article  Google Scholar 

  • Ortega FB, Cadenas-Sánchez C, Sánchez-Delgado G, Mora-González J, Martínez-Téllez B, Artero EG, et al. Systematic review and proposal of a field-based physical fitness-test battery in preschool children: the PREFIT battery. Sports Med. 2015;45(4):533–55.

    Article  Google Scholar 

  • Ortega FB, Konstabel K, Pasquali E, Ruiz JR, Hurtig-Wennlöf A, Mäestu J, et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. PLoS ONE. 2013;8(4):e60871.

    Article  Google Scholar 

  • Ortega FB, Ruiz JR, Sjöström M. Physical activity, overweight and central adiposity in Swedish children and adolescents: the European Adolescents Heart Study. Int J Behav Nutr Phys Act. 2007;4:61.

    Article  Google Scholar 

  • Ottevaere C, Huybrechts I, De Meester F, De Bourdeaudhuij I, Cuenca-Garcia M, De Henauw S. The use of accelerometry in adolescents and its implementation with non-wear time activity diaries in free-living conditions. J Sports Sci. 2011;29(1):103–13.

    Article  Google Scholar 

  • Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. Obes (Silver Spring). 2006;14(11):2000–6.

    Article  Google Scholar 

  • Phillips LRS, Parfitt G, Rowlands AV. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J Sci Med Sport. 2013;16:124–8.

    Article  Google Scholar 

  • Pitsi T, Zilmer M, Vaask S, Ehala-Aleksejev K, Kuu S, Löhmus K, et al. Eesti toitumis- ja liikumissoovitused 2015 (Estonian guidelines on nutrition and physical activity). Tallinn: Tervise Arengu Instituut. 2017. https://intra.tai.ee//images/prints/documents/149019033869_eesti%20toitumis-%20ja%20liikumissoovitused.pdf. Assessed 2 Feb 2018.

  • Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment with accelerometers: new insights and validation studies. Obes Rev. 2013;14(6):451–62.

    Article  Google Scholar 

  • Powell KE, Paluch AE, Blair SN. Physical activity for health: What kind? How much? How intense? On top of what? Annu Rev Public Health. 2011;32:349–65.

    Article  Google Scholar 

  • Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–7.

    Article  Google Scholar 

  • R Core Team. R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2017. https://www.R-project.org/. Accessed 3 May 2018.

  • Rääsk T, Konstabel K, Mäestu J, Lätt E, Jürimäe T, Jürimäe J. Tracking of physical activity in pubertal boys with different BMI over two-year period. J Sports Sci. 2015a;33:1649–57.

    Article  Google Scholar 

  • Rääsk T, Lätt E, Jürimäe T, Mäestu J, Jürimäe J, Konstabel K. Association of subjective ratings to objectively assessed physical activity in pubertal boys with differing BMI. Percept Mot Skills. 2015b;121(1):245–59.

    Article  Google Scholar 

  • Rääsk T, Mäestu J, Lätt E, Jürimäe J, Jürimäe T, Vainik U, et al. Comparison of IPAQ-SF and two other physical activity questionnaires with accelerometer in adolescent boys. PLoS ONE. 2017;12(1):e0169527.

    Article  Google Scholar 

  • Reilly JJ, Methven E, McDowell Z. Health consequences of obesity. Arch Dis Child. 2003;88:748–52.

    Article  Google Scholar 

  • Rich C, Geraci M, Griffiths L, Sera F, Dezateux C, Cortina-Borja M. Quality control methods in accelerometer data processing. PLoS ONE. 2013;8(6):e67206.

    Article  Google Scholar 

  • Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med Sci Sports Exerc. 2013;45(5):964–75.

    Article  Google Scholar 

  • Sallis JF, Patrick K. Physical activity guidelines for adolescents: consensus statement. Pediatric Exerc Sci. 1994;6:302–14.

    Article  Google Scholar 

  • Santos-Lozano A, Marín PJ, Torres-Luque G, Ruiz JR, Lucía A, Garatachea N. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34(6):787–90.

    Article  Google Scholar 

  • Sardinha LB, Júdice PB. Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW. Eur J Clin Nutr. 2017;71(8):1026.

    Article  Google Scholar 

  • Shiroma EJ, Schepps MA, Harezlak J, Chen KY, Matthews CE, Koster A, et al. Daily physical activity patterns from hip- and wrist-worn accelerometers. Physiol Meas. 2016;37(10):1852–61.

    Article  Google Scholar 

  • Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

    Article  Google Scholar 

  • Sirard JR, Trost SG, Pfeiffer KA, Dowda M, Pate RR. Calibration and evaluation of an objective measure of physical activity in preschool children. J Phys Act Health. 2005;2(3):345–57.

    Article  Google Scholar 

  • Sirichana W, Dolezal BA, Neufeld EV, Wang X, Cooper CB. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities. J Sci Med Sport. 2017;20:761–5.

    Article  Google Scholar 

  • Swartz AM, Strath SJ, Bassett WI, O’Brien DR, King GA, Anisworth BE. Estimation of energy expenditure using CSA accelerometers at hip ad wrist sites. Med Sci Sports Exerc. 2000;32:S450–6.

    Article  Google Scholar 

  • Telama R, Yang X, Leskinen E, Kankaanpää A, Hirvensalo M, Tammelin T, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.

    Article  Google Scholar 

  • Tremblay MS, Barnes JD, Copeland JL, Esliger DW. Conquering childhood inactivity: is the answer in the past? Med Sci Sports Exerc. 2005;37:1187–94.

    Article  Google Scholar 

  • Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004;36(7):1259–66.

    Google Scholar 

  • Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.

    Article  Google Scholar 

  • Trost S, Kerr L, Ward D, Pate R. Physical activity and determinants of physical activity in obese and non-obese children. Int J Obes Relat Metabol Disord. 2001;25:822–9.

    Article  Google Scholar 

  • Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;30(2):426–31.

    Article  Google Scholar 

  • Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut-points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43:1360–8.

    Article  Google Scholar 

  • Trost SG. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1:299–314.

    Article  Google Scholar 

  • Twisk J, Mellenbergh G, van Mechelen W. Tracking of biological and lifestyle cardiovascular risk factors over a 14-year period. Am J Epidemiol. 1997;145:888–95.

    Article  Google Scholar 

  • van Cauwenberghe EV, Labarque V, Trost SG, De Bourdeaudhuij I, Cardon G. Calibration and comparison of accelerometer cut points in preschool children. Int J Pediatr Obes. 2010;6(2–2):e582–9.

    Google Scholar 

  • van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE. 2013;8(4):e61691.

    Article  Google Scholar 

  • van Hees VT, Renström F, Wright A, Gradmark A, Catt M, Chen KY, et al. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS ONE. 2011;6(7):e22922.

    Article  Google Scholar 

  • van Hees VT. GGIR: raw accelerometer data analysis. R package version 1.5–16. 2018. https://CRAN.R-project.org/package=GGIR. Accessed 2 May 2018.

  • Vanhelst J, Béghin L, Salleron J, Ruiz JR, Ortega FB, Ottevaere C, et al. Impact of the choice of threshold on physical activity patterns in free living conditions among adolescents measured using a uniaxial accelerometer: the HELENA study. J Sports Sci. 2014a;32(2):110–5.

    Article  Google Scholar 

  • Vanhelst J, Fardy PS, Duhamel A, Béghin L. How many days of accelerometer monitoring predict weekly physical activity behaviour in obese youth? Clin Physiol Funct Imaging. 2014b;34(5):384–8.

    Article  Google Scholar 

  • Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: Best practices and research recommendations. Med Sci Sports Exerc. 2005;37(11):582–8.

    Article  Google Scholar 

  • Wareham N, Rennie K. The assessment of physical activity in individuals and populations: why try to be more precise about how physical activity is assessed? Int J Obes (Lond). 1998;22:S30–8.

    Google Scholar 

  • Whelton PK, He J, Appel LJ, Cutler JA, Havas S, Kotchen TA, et al. National high blood pressure education program coordinating committee. Primary prevention of hypertension: clinical and public health advisory from the national high blood pressure education program. JAMA. 2002;288(15):1882–8.

    Article  Google Scholar 

  • Whitaker R, Wright J, Pepe M, Seidel K, Dietz W. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337:869–73.

    Article  Google Scholar 

  • World Health Organization. Global recommendations on physical activity for health. 2010. http://www.who.int/dietphysicalactivity/publications/9789241599979/en/. Accessed 2 May 2018.

  • Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10(8):7772–88.

    Article  Google Scholar 

  • Zakeri IF, Adolph AL, Puyau MR, Vohra FA, Butte NF. Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers. J Nutr. 2013;143(1):114–22.

    Article  Google Scholar 

  • Zhang JH, Macfarlane DJ, Sobko T. Feasibility of a chest-worn accelerometer for physical activity measurement. J Sci Med Sport. 2016;19(12):1015–9.

    Article  Google Scholar 

  • Zhou SM, Hill RA, Morgan K, Stratton G, Gravenor MB, Bijlsma G, et al. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. BMJ Open. 2015;5(5):e007447.

    Article  Google Scholar 

  • Zhou W, Owen N. Sedentary behavior and health concepts, assessments, and interventions. Champaign, IL: Human Kinetics; 2017.

    Google Scholar 

Download references

Acknowledgements

The development of instruments, the baseline data collection, and the first follow-up work as part of the IDEFICS study (www.idefics.eu) were financially supported by the European Commission within the Sixth RTD Framework Programme Contract No. 016181 (FOOD). The most recent follow-up including the development of new instruments and the adaptation of previously used instruments was conducted in the framework of the I.Family study (www.ifamilystudy.eu) which was funded by the European Commission within the Seventh RTD Framework Programme Contract No. 266044 (KBBE 2010–14).

We thank all families for participating in the extensive examinations of the IDEFICS and I.Family studies. We are also grateful for the support from school boards, headmasters, and communities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenn Konstabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konstabel, K., Chopra, S., Ojiambo, R., Muñiz-Pardos, B., Pitsiladis, Y. (2019). Accelerometry-Based Physical Activity Assessment for Children and Adolescents. In: Bammann, K., Lissner, L., Pigeot, I., Ahrens, W. (eds) Instruments for Health Surveys in Children and Adolescents. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-98857-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98857-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98856-6

  • Online ISBN: 978-3-319-98857-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics