Skip to main content

Phototrophs in Caves

Part of the Ecological Studies book series (ECOLSTUD,volume 235)

Abstract

Phototrophic organisms live in cave entrances, where they can obtain enough sunlight for their growth, and inside show caves, around lamps as lampenflora. At specific points, light and microclimatic conditions in cave entrances support life under extreme, dimly lit conditions, providing a refuge for certain plants and creating significant diversity hotspots for some cyanobacteria. Physiological and morphocytological adaptations, as well as etiolated growth of these organisms in caves, are common. Phototrophs in caves have an impact on litholysis and lithogenesis. Biocalcified formations include calcified plant thalli, diverse forms of tuffaceous stalactites and stromatolitic stalagmites. Sun-illuminated dry and submerged cave entrances including cenotes, ice caves and lava tubes are generally understudied. In comparison to phototrophic communities at cave entrances, the lampenflora is less diverse. In show caves and prehistoric cave sites, lampenflora represents a major threat to sensitive surfaces. In addition to imposing a green patina on rock-art paintings, its metabolic products sustain bacteria and fungi within the biofilm that are the major active bio-weathering agents. Eukaryotic algae generally dominate in lampenflora communities. Growth of lampenflora in underground locations does not cease even under lamps with altered emission spectra. Regular removal of the growth, accompanied by a restricted lighting regime, prevents further expansion of lampenflora.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98852-8_6
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-98852-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2

References

  • Albertano P (2012) Cyanobacterial biofilms in monuments and caves. In: Whitton BA (ed) Ecology of Cyanobacteria II. Springer, Netherlands, pp 317–343

    CrossRef  Google Scholar 

  • Albertano P, Urzi C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 38:244–252

    CAS  PubMed  CrossRef  Google Scholar 

  • Alongi G, Cormaci M, Furnari G et al (2012) Floristic macroalgal diversity in selected submarine caves located within two marine protected areas off Lampedusa Island and Sicily (Italy). Bot Mar 55:387–397

    Google Scholar 

  • Asencio A, Aboal M (2000) Algae from La Serreta cave (Murcia, SE Spain) and their environmental conditions. Arch Hydrobiol Suppl Algol Stud 131:59–78

    Google Scholar 

  • Asencio A, Aboal M (2004) Cell inclusions in the chasmoendolithic Cyanophytes from cave-like environments in Murcia (SE Spain). Arch Hydrobiol Suppl Algol Stud 113:117–127

    Google Scholar 

  • Asencio AD, Aboal M (2001) Biodeterioration of wall paintings in caves of Murcia (SE Spain) by epilithic and chasmoendolithic microalgae. Arch Hydrobiol Suppl Algol Stud 140:131–142

    CAS  Google Scholar 

  • Bastian F, Jurado V, Nováková A et al (2010) The microbiology of Lascaux Cave. Microbiol-Sgm 156:644–652

    CAS  CrossRef  Google Scholar 

  • Berg I (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Borderie F, Laurence A, Naoufal R et al (2011) UV-C irradiation as a tool to eradicate algae in caves. Int Biodeterior Biodegrad 65:579–584

    CAS  CrossRef  Google Scholar 

  • Briand F, Cohen J (1987) Environmental correlates of food-chain length. Science 238:956–960

    CAS  PubMed  CrossRef  Google Scholar 

  • Brunet R, Revuelta M (2014) Exceptional silica speleothems in a volcanic cave: a unique example of silicification and sub-aquatic opaline stromatolite formation (Terceira, Azores). Sedimentology 61:2113–2135

    CrossRef  Google Scholar 

  • Buckallew R (2003) Vascular flora of the University of Central Oklahoma Selman Living Laboratory, Woodward, County, Oklahoma. Proc Oklahoma Acad Sci 83:31–45

    Google Scholar 

  • Buczkó K, Rajczy M (1989) Contributions to the flora of the Hungarian caves. II. Flora of three caves near Beremend, Hungary. Stud Botanica Hung 21:13–25

    Google Scholar 

  • Burgess J (1985) An introduction to plant cell development. New York, Cambridge University Press, Cambridge

    Google Scholar 

  • Coombes M, La Marca E, Naylor L et al (2015) The influence of light attenuation on the biogeomorphology of a marine karst cave: a case study of Puerto Princesa Underground River, Palawan, the Philippines. Geomorphology 229:125–133

    CrossRef  Google Scholar 

  • Couté A (1982) Ultrastructure d’une cyanophycée aérienne calcifiée cavernicole: Geitleria calcarea Friedmann. Hydrobiologia 97:255–274

    CrossRef  Google Scholar 

  • Couté A (1989) Geitleria calcarea Friedmann (Cyanophyceae, Hormogonophycidae, Stigonematales, Stigonemataceae)—a species adapted to an extreme environment. Bull Soc Bot France-Actual Bot 136:113–130

    Google Scholar 

  • Couté A, Bury E (1988) Ultrastructure of a cavernicolous lime-encrusted atmophytic filamentous blue-green-alga, Scytonema julianum (Frank) Richter (Hormogonophycideae, Nostocales, Scytonemataceae). Hydrobiolgia 160:219–239

    CrossRef  Google Scholar 

  • Cox G (1977) Photosynthesis in the deep twilight zone: microorganisms with extreme structural adaptations to low light. In: Ford TD (ed) Proceedings 7th International Congress of Speleology. University of Leicester, Sheffield, pp 131–133

    Google Scholar 

  • Cox G, Benson D, Dwarte DM (1981) Ultrastructure of a cave wall cyanophyte-Gloeocapsa NS4. Arch Microbiol 130:165–174

    CrossRef  Google Scholar 

  • Cox G, James JM, Armstrong RAL et al (1989a) Stromatolitic crayfish-like stalagmites. Proc Univ Bristol Spelaeol Soc 18:339–358

    Google Scholar 

  • Cox G, James JM, Leggett KEA et al (1989b) Cyanobacterially deposited speleothems – subaerial stromatolites. Geomicrobiol J 7:245–252

    CrossRef  Google Scholar 

  • Czerwik-Marcinkowska J, Mrozińska T (2011) Algae and cyanobacteria in caves of the Polish Jura. Polish Bot J 56:203–243

    Google Scholar 

  • Dalby DH (1966) The growth of plants under reduced light. Stud Speleol 1:193–203

    Google Scholar 

  • de Luna J, Molini D, Fernandez-Balbuena A et al (2015) Selective spectral LED lighting system applied in Paleolithic cave art. Leukos 11:223–230

    CrossRef  Google Scholar 

  • del Rosal Y, Hernández-Mariné M, Roldán M (2014) Phototrophic microorganisms in the tourist cave of Nerja. In: Candelera R (ed) Science, technology and cultural heritage. Proceedings of the Second International Congress on Science and Technology for the Conservation of Cultural Heritage, London, Taylor & Francis Group, pp 229–234

    Google Scholar 

  • Dobat K (1970) Considérations sur la végétation cryptogamique des grottes du Jura Souabe (sud-ouest de l’Allemagne). Annls Spéléol 25:872–907

    Google Scholar 

  • Dobat K (1998) Flore (Lichens, Bryophytes, Pteridophytes, Spermatophytes). In: Juberthie C, Decu V (eds) Encyclopaedia Biospeleologica, Tome 2. Seociété de Biospéologie, Moulis, Bucarest, pp 1311–1324

    Google Scholar 

  • Dodge-Wan D, Deng A, Abbas M (2012) Occurrence and morphology of crayback-like stalagmites in the Painted Cave of Niah (Sarawak, Malaysia). Carbonat Evaporit 27:343–356

    CrossRef  Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, London, Edinburgh, Melbourne, pp 530–559

    Google Scholar 

  • Falasco E, Bona F, Isaia M et al (2015) Nupela troglophila sp nov., an aerophilous diatom (Bacillariophyta) from the Bossea cave (NW Italy), with notes on its ecology. Fottea 15:1–9

    CrossRef  Google Scholar 

  • Fiol L (1995) Flora at the cavity entrances in Mallorca. ENDINS 20:145–153

    Google Scholar 

  • Gerovasileiou V, Chintiroglou C, Vafidis D et al (2015) Census of biodiversity in marine caves of the eastern Mediterranean Sea. Medit Marin Sci 16:245–265

    CrossRef  Google Scholar 

  • Ginés A, Ginés P (1992) Principals característiques climàtiques des Clot des Sero (Calvià, Mallorca). ENDINS 17–18:37–42

    Google Scholar 

  • Giordano M, Mobili F, Pezzoni V et al (2000) Photosynthesis in the caves of Frasassi (Italy). Phycologia 39:384–389

    CrossRef  Google Scholar 

  • Glime JM (2007) Bryophyte ecology, vol 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists

    Google Scholar 

  • Goff M, Tenorio J, Radovsky F (1979) Mesostigmata (Acari) associated with a fumarole in Hawaii volcanoes. Pacif Insect 21:83–89

    Google Scholar 

  • Golubić S (1967) Algenvegetation der Felsen: Eine ökologische Algenstudie im dinarischen Karstgebiet. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Hauer T, Mühlsteinová R, Bohunická M et al (2015) Diversity of cyanobacteria on rock surfaces. Biodivers Conserv 24:759–779

    CrossRef  Google Scholar 

  • Hebelka J (2014) Methodology of lampenflora removal in caves accessible for tourists. The Cave Administration of the Czech Republic

    Google Scholar 

  • Hernández-Mariné M, Asencio A, Canals A et al (1999) Discovery of populations of the lime-incrusting genus Loriella (Stigonematales) in Spanish caves. Arch Hydrobiol Suppl Algol Stud 94:121–138

    Google Scholar 

  • Hernández-Mariné M, Canals T (1994) Herpyzonema pulverulentum (Mastigocladaceae), a new cavernicolous atmophytic and lime-incrusted cyanophyte. Arch Hydrobiol Suppl Algol Stud 75:123–136

    Google Scholar 

  • Hillebrand-Voiculescu A, Ițcuș C, Ardelean I et al (2014) Searching for cold-adapted microorganisms in the underground glacier of Scarisoara Ice Cave, Romania. Acta Carsol 43:319–329

    Google Scholar 

  • James J, Patsalides E, Cox G (1994) Amino acid composition of stromatolitic stalagmites. Geomicrobiol J 12:183–194

    CAS  CrossRef  Google Scholar 

  • Kociolek J, Stepanek J, Lowe R et al (2013) Molecular data show the enigmatic cave-dwelling diatom Diprora (Bacillariophyceae) to be a raphid diatom. Eur J Phycol 48:474–484

    CrossRef  Google Scholar 

  • Kol E (1964) The microvegetation of a small ice-cave in Hungary. Int J Speleol 1:19–24

    CrossRef  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota 3. Teil: Heterocystous genera. Springer Spektrum, Berlin, Heidelberg

    Google Scholar 

  • Komárek J, Anagnostidis K (2000) Cyanoprokaryota 1. Teil: Chroococcales. Spektrum Akademischer Verlag, Heidelberg, Berlin

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Lamprinou V, Danielidis D, Economou-Amilli A et al (2012a) Distribution survey of Cyanobacteria in three Greek caves of Peloponnese. Int J Speleol 41:267–272

    CrossRef  Google Scholar 

  • Lamprinou V, Danielidis D, Pantazidou A et al (2014) The show cave of Diros vs. wild caves of Peloponnese, Greece – distribution patterns of Cyanobacteria. Int J Speleol 43:335–342

    CrossRef  Google Scholar 

  • Lamprinou V, Hernández-Mariné M, Canals T et al (2011) Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Microbiol 61:2907–2915

    CAS  PubMed  CrossRef  Google Scholar 

  • Lamprinou V, Skaraki K, Kotoulas G et al (2012b) Toxopsis calypsus gen. nov., sp nov (Cyanobacteria, Nostocales) from cave ‘Francthi’, Peloponnese, Greece: a morphological and molecular evaluation. Int J Syst Evol Microbiol 62:2870–2877

    CAS  PubMed  CrossRef  Google Scholar 

  • Lamprinou V, Tryfinopoulou K, Velonakis EN et al (2015) Cave Cyanobacteria showing antibacterial activity. Int J Speleol 44:231–238

    CrossRef  Google Scholar 

  • Lisker S, Vaks A, Bar-Matthews M et al (2009) Stromatolites in caves of the Dead Sea Fault Escarpment: implications to latest Pleistocene lake levels and tectonic subsidence. Quat Sci Rev 28:80–92

    CrossRef  Google Scholar 

  • Lloyd D (1974) Dark respiration. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, London, pp 505–529

    Google Scholar 

  • Lundberg J, McFarlane D (2011) Subaerial freshwater phosphatic stromatolites in Deer Cave, Sarawak – A unique geobiological cave formation. Geomorphology 128:57–72

    CrossRef  Google Scholar 

  • Luttge U (1997) Cyanobacterial Tintenstrich communities and their ecology. Naturwissenschaften 84:526–534

    CrossRef  Google Scholar 

  • Martinčič A (1973) Flora surviving in the caves of Škocjan and its ecology. Biološki Vestnik 21:117–126

    Google Scholar 

  • Martínez A, Asencio A (2010) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud 72:11–20

    CrossRef  Google Scholar 

  • Mazina SE, Maximov VN (2011) Photosynthetic organism communities of the Akhshtyrskaya excursion cave. Moscow Univ Biol Sci Bull 66:37–41

    CrossRef  Google Scholar 

  • Monro AK, Bystriakova N, Fu L et al (2018) Discovery of a diverse cave flora in China. PLoS One 13:e0190801

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Moseley M, Smith M, Broders H et al (2013) Biology of Wisqoq Cave, a raccoon-inhabited cave in Nova Scotia. Speleobiology Notes 5:66–73

    Google Scholar 

  • Mulec J (2012) Lampenflora. In: White W, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Amsterdam, pp 451–456

    CrossRef  Google Scholar 

  • Mulec J (2014) Human impact on underground cultural and natural heritage sites, biological parameters of monitoring and remediation actions for insensitive surfaces: case of Slovenian show caves. J Nat Conserv 22:132–141

    CrossRef  Google Scholar 

  • Mulec J (2015) The diversity and ecology of microbes associated with lampenflora in cave and karst settings. In: Summers Engel A (ed) Microbial life of cave systems. De Gruyter, Berlin, pp 263–278

    Google Scholar 

  • Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71:109–115

    CAS  Google Scholar 

  • Mulec J, Kosi G, Vrhovšek D (2007) Algae promote growth of stalagmites and stalactites in karst caves (Škocjanske jame, Slovenia). Carbonate Evaporite 22:6–9

    CrossRef  Google Scholar 

  • Mulec J, Kosi G, Vrhovšek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70:3–12

    CAS  Google Scholar 

  • Mulec J, Kubešová S (2010) Diversity of Bryophytes in show caves in Slovenia and relation to light intensities. Acta Carsol 39:587–596

    CrossRef  Google Scholar 

  • Pentecost A, Whitton B (2012) Subaerial Cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Dordrecht, Heidelberg, pp 291–316

    CrossRef  Google Scholar 

  • Pentecost A, Zhaohui Z (2001) The distribution of plants in Scoska Cave, North Yorkshire, and their relationship to light intensity. Int J Speleol 30:27–37

    CrossRef  Google Scholar 

  • Pericàs J, Ginés A, Rosselló J (2009) New bryophyte records for Majorca (Balearic islands). Flora Montiberica 43:87–91

    Google Scholar 

  • Piano E, Bona F, Falasco E et al (2015) Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps). Sci Total Environ 536:1007–1018

    CAS  PubMed  CrossRef  Google Scholar 

  • Popović S, Simić G, Stupar M et al (2015) Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int J Speleol 44:141–149

    CrossRef  Google Scholar 

  • Por FD, Dimentman C, Frumkin A et al (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5:7–13

    Google Scholar 

  • Porter M, Engel A, Kane T et al (2009) Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38:27–40

    CrossRef  Google Scholar 

  • Rajczy M (1978–1979) Effect of the cave environment on some mosses. Annls Univ Scient Budapest Rolando Eötvös Nomin Sectio Biol 20-21:125–136

    Google Scholar 

  • Rajczy M, Buczkó K, Komáromy P (1986) Contributions to the flora of the Hungarian caves I. Flora of the entrances of the caves Lők-völgyi-barlang and Szeleta-barlang. Stud Botan Hung 19:79–88

    Google Scholar 

  • Roldán M, Oliva F, Gónzalez Del Valle MA et al (2006) Does green light influence the fluorescence properties and structure of phototrophic biofilms? Appl Environ Microbiol 72:3026–3031

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Rosselló J, Ginés A (1980) Introducció a la brioflora dels avencs mallorquins. ENDINS 7:27–35

    Google Scholar 

  • Rosselló J, Pericàs J (2011) La flora de les cavitats càrstiques de les Balears: què en sabem? ENDINS 35:237–240

    Google Scholar 

  • Saiz-Jimenez C (2010) Painted material. In: Mitchell R, McNamarra CJ (eds) Cultural heritage microbiology: fundamental studies in conservation science. ASM Press, Washington DC, pp 3–13

    Google Scholar 

  • Sarbu S, Kane T, Kinkle B (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    CAS  PubMed  CrossRef  Google Scholar 

  • Selvi B, Altuner Z (2007) Algae of Ballıca Cave (Tokat-Turkey). Int J Nat Eng Sci 1:99–103

    Google Scholar 

  • Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    CAS  CrossRef  PubMed  Google Scholar 

  • Sprachta S, Camoin G, Golubic S et al (2001) Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeogr Palaeoclim Palaeoecol 175:103–124

    CrossRef  Google Scholar 

  • Taboroši D (2006) Biologically influenced carbonate speleothems. In: Harmon RS, Wicks C (eds) Special Paper 404: Perspectives on Karst Geomorphology, hydrology, and geochemistry – a tribute Volume to Derek C. Ford and William B. White. Geological Society of America, Boulder, pp 307–317

    CrossRef  Google Scholar 

  • Taylor JC, Lange-Bertalot H (2013) Cholnokyella aerophila J. C. Taylor & Lange-Bertalot gen. et spec. nov. A new diatom (Bacillariophyceae) from sandstone caves in South Africa. Nova Hedwigia 97:295–304

    CrossRef  Google Scholar 

  • Urzi C, De Leo F, Bruno L et al (2010) Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60:116–129

    CAS  PubMed  CrossRef  Google Scholar 

  • Uzunov BA, Stoyneva MP, Gärtner G (2007) Review of the studies on aero-terrestrial cyanoprokaryotes and algae in Bulgaria with a checklist of the recorded species. I. Phytol Balcan 13:65–73

    Google Scholar 

  • Van De Vijver B, Cox E (2013) New and interesting small-celled naviculoid diatoms (Bacillariophyceae) from a lava tube cave on Ile Amsterdam (TAAF, Southern Indian Ocean). Cryptogam Algol 34:37–47

    CrossRef  Google Scholar 

  • Vinogradova O, Darienko T, Pavliček T et al (2011) Cyanoprokaryotes and algae of Arubota’im salt cave (Mount Sedom, Dead Sea area, Israel). Nova Hedwigia 93:107–124

    CrossRef  Google Scholar 

  • Vinogradova O, Kovalenko O, Wasser S et al (1995) Algae of the Mount Carmel national park (Israel). Algologia 5:178–192

    Google Scholar 

  • Vinogradova O, Kovalenko O, Wasser S et al (1998) Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. Israel J Plant Sci 46:229–238

    CrossRef  Google Scholar 

  • Vinogradova ON, Nevo E, Wasser SP (2009) Algae of the Sefunim Cave (Israel): species diversity affected by light, humidity and rock stresses. Int J Algae 11:99–116

    CrossRef  Google Scholar 

  • Walochnik J, Mulec J (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp nov. Acta Protozool 48:25–33

    Google Scholar 

  • Whippo C, Hangarter R (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur J Phycol 47:341–354

    CrossRef  Google Scholar 

  • Zammit G, Sanchez-Moral S, Albertano P (2011) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409:2773–2782

    CAS  PubMed  CrossRef  Google Scholar 

  • Zucconi L, Gagliardi M, Isola D et al (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeter Biodegr 70:40–46

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P6-0119), and Angel Ginés, Tina Eleršek and Andreea Oarga-Mulec for their valuable comments on an earlier version of the manuscript, and David Lowe for comments and language editing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Mulec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mulec, J. (2018). Phototrophs in Caves. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_6

Download citation