Cave Ecology pp 91-106 | Cite as

Phototrophs in Caves

  • Janez MulecEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


Phototrophic organisms live in cave entrances, where they can obtain enough sunlight for their growth, and inside show caves, around lamps as lampenflora. At specific points, light and microclimatic conditions in cave entrances support life under extreme, dimly lit conditions, providing a refuge for certain plants and creating significant diversity hotspots for some cyanobacteria. Physiological and morphocytological adaptations, as well as etiolated growth of these organisms in caves, are common. Phototrophs in caves have an impact on litholysis and lithogenesis. Biocalcified formations include calcified plant thalli, diverse forms of tuffaceous stalactites and stromatolitic stalagmites. Sun-illuminated dry and submerged cave entrances including cenotes, ice caves and lava tubes are generally understudied. In comparison to phototrophic communities at cave entrances, the lampenflora is less diverse. In show caves and prehistoric cave sites, lampenflora represents a major threat to sensitive surfaces. In addition to imposing a green patina on rock-art paintings, its metabolic products sustain bacteria and fungi within the biofilm that are the major active bio-weathering agents. Eukaryotic algae generally dominate in lampenflora communities. Growth of lampenflora in underground locations does not cease even under lamps with altered emission spectra. Regular removal of the growth, accompanied by a restricted lighting regime, prevents further expansion of lampenflora.



The author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P6-0119), and Angel Ginés, Tina Eleršek and Andreea Oarga-Mulec for their valuable comments on an earlier version of the manuscript, and David Lowe for comments and language editing assistance.


  1. Albertano P (2012) Cyanobacterial biofilms in monuments and caves. In: Whitton BA (ed) Ecology of Cyanobacteria II. Springer, Netherlands, pp 317–343CrossRefGoogle Scholar
  2. Albertano P, Urzi C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 38:244–252PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alongi G, Cormaci M, Furnari G et al (2012) Floristic macroalgal diversity in selected submarine caves located within two marine protected areas off Lampedusa Island and Sicily (Italy). Bot Mar 55:387–397Google Scholar
  4. Asencio A, Aboal M (2000) Algae from La Serreta cave (Murcia, SE Spain) and their environmental conditions. Arch Hydrobiol Suppl Algol Stud 131:59–78Google Scholar
  5. Asencio A, Aboal M (2004) Cell inclusions in the chasmoendolithic Cyanophytes from cave-like environments in Murcia (SE Spain). Arch Hydrobiol Suppl Algol Stud 113:117–127Google Scholar
  6. Asencio AD, Aboal M (2001) Biodeterioration of wall paintings in caves of Murcia (SE Spain) by epilithic and chasmoendolithic microalgae. Arch Hydrobiol Suppl Algol Stud 140:131–142Google Scholar
  7. Bastian F, Jurado V, Nováková A et al (2010) The microbiology of Lascaux Cave. Microbiol-Sgm 156:644–652CrossRefGoogle Scholar
  8. Berg I (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borderie F, Laurence A, Naoufal R et al (2011) UV-C irradiation as a tool to eradicate algae in caves. Int Biodeterior Biodegrad 65:579–584CrossRefGoogle Scholar
  10. Briand F, Cohen J (1987) Environmental correlates of food-chain length. Science 238:956–960PubMedCrossRefGoogle Scholar
  11. Brunet R, Revuelta M (2014) Exceptional silica speleothems in a volcanic cave: a unique example of silicification and sub-aquatic opaline stromatolite formation (Terceira, Azores). Sedimentology 61:2113–2135CrossRefGoogle Scholar
  12. Buckallew R (2003) Vascular flora of the University of Central Oklahoma Selman Living Laboratory, Woodward, County, Oklahoma. Proc Oklahoma Acad Sci 83:31–45Google Scholar
  13. Buczkó K, Rajczy M (1989) Contributions to the flora of the Hungarian caves. II. Flora of three caves near Beremend, Hungary. Stud Botanica Hung 21:13–25Google Scholar
  14. Burgess J (1985) An introduction to plant cell development. New York, Cambridge University Press, CambridgeGoogle Scholar
  15. Coombes M, La Marca E, Naylor L et al (2015) The influence of light attenuation on the biogeomorphology of a marine karst cave: a case study of Puerto Princesa Underground River, Palawan, the Philippines. Geomorphology 229:125–133CrossRefGoogle Scholar
  16. Couté A (1982) Ultrastructure d’une cyanophycée aérienne calcifiée cavernicole: Geitleria calcarea Friedmann. Hydrobiologia 97:255–274CrossRefGoogle Scholar
  17. Couté A (1989) Geitleria calcarea Friedmann (Cyanophyceae, Hormogonophycidae, Stigonematales, Stigonemataceae)—a species adapted to an extreme environment. Bull Soc Bot France-Actual Bot 136:113–130Google Scholar
  18. Couté A, Bury E (1988) Ultrastructure of a cavernicolous lime-encrusted atmophytic filamentous blue-green-alga, Scytonema julianum (Frank) Richter (Hormogonophycideae, Nostocales, Scytonemataceae). Hydrobiolgia 160:219–239CrossRefGoogle Scholar
  19. Cox G (1977) Photosynthesis in the deep twilight zone: microorganisms with extreme structural adaptations to low light. In: Ford TD (ed) Proceedings 7th International Congress of Speleology. University of Leicester, Sheffield, pp 131–133Google Scholar
  20. Cox G, Benson D, Dwarte DM (1981) Ultrastructure of a cave wall cyanophyte-Gloeocapsa NS4. Arch Microbiol 130:165–174CrossRefGoogle Scholar
  21. Cox G, James JM, Armstrong RAL et al (1989a) Stromatolitic crayfish-like stalagmites. Proc Univ Bristol Spelaeol Soc 18:339–358Google Scholar
  22. Cox G, James JM, Leggett KEA et al (1989b) Cyanobacterially deposited speleothems – subaerial stromatolites. Geomicrobiol J 7:245–252CrossRefGoogle Scholar
  23. Czerwik-Marcinkowska J, Mrozińska T (2011) Algae and cyanobacteria in caves of the Polish Jura. Polish Bot J 56:203–243Google Scholar
  24. Dalby DH (1966) The growth of plants under reduced light. Stud Speleol 1:193–203Google Scholar
  25. de Luna J, Molini D, Fernandez-Balbuena A et al (2015) Selective spectral LED lighting system applied in Paleolithic cave art. Leukos 11:223–230CrossRefGoogle Scholar
  26. del Rosal Y, Hernández-Mariné M, Roldán M (2014) Phototrophic microorganisms in the tourist cave of Nerja. In: Candelera R (ed) Science, technology and cultural heritage. Proceedings of the Second International Congress on Science and Technology for the Conservation of Cultural Heritage, London, Taylor & Francis Group, pp 229–234Google Scholar
  27. Dobat K (1970) Considérations sur la végétation cryptogamique des grottes du Jura Souabe (sud-ouest de l’Allemagne). Annls Spéléol 25:872–907Google Scholar
  28. Dobat K (1998) Flore (Lichens, Bryophytes, Pteridophytes, Spermatophytes). In: Juberthie C, Decu V (eds) Encyclopaedia Biospeleologica, Tome 2. Seociété de Biospéologie, Moulis, Bucarest, pp 1311–1324Google Scholar
  29. Dodge-Wan D, Deng A, Abbas M (2012) Occurrence and morphology of crayback-like stalagmites in the Painted Cave of Niah (Sarawak, Malaysia). Carbonat Evaporit 27:343–356CrossRefGoogle Scholar
  30. Droop MR (1974) Heterotrophy of carbon. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, London, Edinburgh, Melbourne, pp 530–559Google Scholar
  31. Falasco E, Bona F, Isaia M et al (2015) Nupela troglophila sp nov., an aerophilous diatom (Bacillariophyta) from the Bossea cave (NW Italy), with notes on its ecology. Fottea 15:1–9CrossRefGoogle Scholar
  32. Fiol L (1995) Flora at the cavity entrances in Mallorca. ENDINS 20:145–153Google Scholar
  33. Gerovasileiou V, Chintiroglou C, Vafidis D et al (2015) Census of biodiversity in marine caves of the eastern Mediterranean Sea. Medit Marin Sci 16:245–265CrossRefGoogle Scholar
  34. Ginés A, Ginés P (1992) Principals característiques climàtiques des Clot des Sero (Calvià, Mallorca). ENDINS 17–18:37–42Google Scholar
  35. Giordano M, Mobili F, Pezzoni V et al (2000) Photosynthesis in the caves of Frasassi (Italy). Phycologia 39:384–389CrossRefGoogle Scholar
  36. Glime JM (2007) Bryophyte ecology, vol 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of BryologistsGoogle Scholar
  37. Goff M, Tenorio J, Radovsky F (1979) Mesostigmata (Acari) associated with a fumarole in Hawaii volcanoes. Pacif Insect 21:83–89Google Scholar
  38. Golubić S (1967) Algenvegetation der Felsen: Eine ökologische Algenstudie im dinarischen Karstgebiet. E. Schweizerbart'sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  39. Hauer T, Mühlsteinová R, Bohunická M et al (2015) Diversity of cyanobacteria on rock surfaces. Biodivers Conserv 24:759–779CrossRefGoogle Scholar
  40. Hebelka J (2014) Methodology of lampenflora removal in caves accessible for tourists. The Cave Administration of the Czech RepublicGoogle Scholar
  41. Hernández-Mariné M, Asencio A, Canals A et al (1999) Discovery of populations of the lime-incrusting genus Loriella (Stigonematales) in Spanish caves. Arch Hydrobiol Suppl Algol Stud 94:121–138Google Scholar
  42. Hernández-Mariné M, Canals T (1994) Herpyzonema pulverulentum (Mastigocladaceae), a new cavernicolous atmophytic and lime-incrusted cyanophyte. Arch Hydrobiol Suppl Algol Stud 75:123–136Google Scholar
  43. Hillebrand-Voiculescu A, Ițcuș C, Ardelean I et al (2014) Searching for cold-adapted microorganisms in the underground glacier of Scarisoara Ice Cave, Romania. Acta Carsol 43:319–329Google Scholar
  44. James J, Patsalides E, Cox G (1994) Amino acid composition of stromatolitic stalagmites. Geomicrobiol J 12:183–194CrossRefGoogle Scholar
  45. Kociolek J, Stepanek J, Lowe R et al (2013) Molecular data show the enigmatic cave-dwelling diatom Diprora (Bacillariophyceae) to be a raphid diatom. Eur J Phycol 48:474–484CrossRefGoogle Scholar
  46. Kol E (1964) The microvegetation of a small ice-cave in Hungary. Int J Speleol 1:19–24CrossRefGoogle Scholar
  47. Komárek J (2013) Cyanoprokaryota 3. Teil: Heterocystous genera. Springer Spektrum, Berlin, HeidelbergGoogle Scholar
  48. Komárek J, Anagnostidis K (2000) Cyanoprokaryota 1. Teil: Chroococcales. Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  49. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. Spektrum Akademischer Verlag, MünchenGoogle Scholar
  50. Lamprinou V, Danielidis D, Economou-Amilli A et al (2012a) Distribution survey of Cyanobacteria in three Greek caves of Peloponnese. Int J Speleol 41:267–272CrossRefGoogle Scholar
  51. Lamprinou V, Danielidis D, Pantazidou A et al (2014) The show cave of Diros vs. wild caves of Peloponnese, Greece – distribution patterns of Cyanobacteria. Int J Speleol 43:335–342CrossRefGoogle Scholar
  52. Lamprinou V, Hernández-Mariné M, Canals T et al (2011) Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Microbiol 61:2907–2915PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lamprinou V, Skaraki K, Kotoulas G et al (2012b) Toxopsis calypsus gen. nov., sp nov (Cyanobacteria, Nostocales) from cave ‘Francthi’, Peloponnese, Greece: a morphological and molecular evaluation. Int J Syst Evol Microbiol 62:2870–2877PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lamprinou V, Tryfinopoulou K, Velonakis EN et al (2015) Cave Cyanobacteria showing antibacterial activity. Int J Speleol 44:231–238CrossRefGoogle Scholar
  55. Lisker S, Vaks A, Bar-Matthews M et al (2009) Stromatolites in caves of the Dead Sea Fault Escarpment: implications to latest Pleistocene lake levels and tectonic subsidence. Quat Sci Rev 28:80–92CrossRefGoogle Scholar
  56. Lloyd D (1974) Dark respiration. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, London, pp 505–529Google Scholar
  57. Lundberg J, McFarlane D (2011) Subaerial freshwater phosphatic stromatolites in Deer Cave, Sarawak – A unique geobiological cave formation. Geomorphology 128:57–72CrossRefGoogle Scholar
  58. Luttge U (1997) Cyanobacterial Tintenstrich communities and their ecology. Naturwissenschaften 84:526–534CrossRefGoogle Scholar
  59. Martinčič A (1973) Flora surviving in the caves of Škocjan and its ecology. Biološki Vestnik 21:117–126Google Scholar
  60. Martínez A, Asencio A (2010) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud 72:11–20CrossRefGoogle Scholar
  61. Mazina SE, Maximov VN (2011) Photosynthetic organism communities of the Akhshtyrskaya excursion cave. Moscow Univ Biol Sci Bull 66:37–41CrossRefGoogle Scholar
  62. Monro AK, Bystriakova N, Fu L et al (2018) Discovery of a diverse cave flora in China. PLoS One 13:e0190801PubMedPubMedCentralCrossRefGoogle Scholar
  63. Moseley M, Smith M, Broders H et al (2013) Biology of Wisqoq Cave, a raccoon-inhabited cave in Nova Scotia. Speleobiology Notes 5:66–73Google Scholar
  64. Mulec J (2012) Lampenflora. In: White W, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Amsterdam, pp 451–456CrossRefGoogle Scholar
  65. Mulec J (2014) Human impact on underground cultural and natural heritage sites, biological parameters of monitoring and remediation actions for insensitive surfaces: case of Slovenian show caves. J Nat Conserv 22:132–141CrossRefGoogle Scholar
  66. Mulec J (2015) The diversity and ecology of microbes associated with lampenflora in cave and karst settings. In: Summers Engel A (ed) Microbial life of cave systems. De Gruyter, Berlin, pp 263–278Google Scholar
  67. Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71:109–115Google Scholar
  68. Mulec J, Kosi G, Vrhovšek D (2007) Algae promote growth of stalagmites and stalactites in karst caves (Škocjanske jame, Slovenia). Carbonate Evaporite 22:6–9CrossRefGoogle Scholar
  69. Mulec J, Kosi G, Vrhovšek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70:3–12Google Scholar
  70. Mulec J, Kubešová S (2010) Diversity of Bryophytes in show caves in Slovenia and relation to light intensities. Acta Carsol 39:587–596CrossRefGoogle Scholar
  71. Pentecost A, Whitton B (2012) Subaerial Cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Dordrecht, Heidelberg, pp 291–316CrossRefGoogle Scholar
  72. Pentecost A, Zhaohui Z (2001) The distribution of plants in Scoska Cave, North Yorkshire, and their relationship to light intensity. Int J Speleol 30:27–37CrossRefGoogle Scholar
  73. Pericàs J, Ginés A, Rosselló J (2009) New bryophyte records for Majorca (Balearic islands). Flora Montiberica 43:87–91Google Scholar
  74. Piano E, Bona F, Falasco E et al (2015) Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps). Sci Total Environ 536:1007–1018PubMedCrossRefPubMedCentralGoogle Scholar
  75. Popović S, Simić G, Stupar M et al (2015) Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int J Speleol 44:141–149CrossRefGoogle Scholar
  76. Por FD, Dimentman C, Frumkin A et al (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5:7–13Google Scholar
  77. Porter M, Engel A, Kane T et al (2009) Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38:27–40CrossRefGoogle Scholar
  78. Rajczy M (1978–1979) Effect of the cave environment on some mosses. Annls Univ Scient Budapest Rolando Eötvös Nomin Sectio Biol 20-21:125–136Google Scholar
  79. Rajczy M, Buczkó K, Komáromy P (1986) Contributions to the flora of the Hungarian caves I. Flora of the entrances of the caves Lők-völgyi-barlang and Szeleta-barlang. Stud Botan Hung 19:79–88Google Scholar
  80. Roldán M, Oliva F, Gónzalez Del Valle MA et al (2006) Does green light influence the fluorescence properties and structure of phototrophic biofilms? Appl Environ Microbiol 72:3026–3031PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rosselló J, Ginés A (1980) Introducció a la brioflora dels avencs mallorquins. ENDINS 7:27–35Google Scholar
  82. Rosselló J, Pericàs J (2011) La flora de les cavitats càrstiques de les Balears: què en sabem? ENDINS 35:237–240Google Scholar
  83. Saiz-Jimenez C (2010) Painted material. In: Mitchell R, McNamarra CJ (eds) Cultural heritage microbiology: fundamental studies in conservation science. ASM Press, Washington DC, pp 3–13Google Scholar
  84. Sarbu S, Kane T, Kinkle B (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955PubMedCrossRefGoogle Scholar
  85. Selvi B, Altuner Z (2007) Algae of Ballıca Cave (Tokat-Turkey). Int J Nat Eng Sci 1:99–103Google Scholar
  86. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236CrossRefGoogle Scholar
  87. Sprachta S, Camoin G, Golubic S et al (2001) Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeogr Palaeoclim Palaeoecol 175:103–124CrossRefGoogle Scholar
  88. Taboroši D (2006) Biologically influenced carbonate speleothems. In: Harmon RS, Wicks C (eds) Special Paper 404: Perspectives on Karst Geomorphology, hydrology, and geochemistry – a tribute Volume to Derek C. Ford and William B. White. Geological Society of America, Boulder, pp 307–317CrossRefGoogle Scholar
  89. Taylor JC, Lange-Bertalot H (2013) Cholnokyella aerophila J. C. Taylor & Lange-Bertalot gen. et spec. nov. A new diatom (Bacillariophyceae) from sandstone caves in South Africa. Nova Hedwigia 97:295–304CrossRefGoogle Scholar
  90. Urzi C, De Leo F, Bruno L et al (2010) Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60:116–129PubMedCrossRefGoogle Scholar
  91. Uzunov BA, Stoyneva MP, Gärtner G (2007) Review of the studies on aero-terrestrial cyanoprokaryotes and algae in Bulgaria with a checklist of the recorded species. I. Phytol Balcan 13:65–73Google Scholar
  92. Van De Vijver B, Cox E (2013) New and interesting small-celled naviculoid diatoms (Bacillariophyceae) from a lava tube cave on Ile Amsterdam (TAAF, Southern Indian Ocean). Cryptogam Algol 34:37–47CrossRefGoogle Scholar
  93. Vinogradova O, Darienko T, Pavliček T et al (2011) Cyanoprokaryotes and algae of Arubota’im salt cave (Mount Sedom, Dead Sea area, Israel). Nova Hedwigia 93:107–124CrossRefGoogle Scholar
  94. Vinogradova O, Kovalenko O, Wasser S et al (1995) Algae of the Mount Carmel national park (Israel). Algologia 5:178–192Google Scholar
  95. Vinogradova O, Kovalenko O, Wasser S et al (1998) Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. Israel J Plant Sci 46:229–238CrossRefGoogle Scholar
  96. Vinogradova ON, Nevo E, Wasser SP (2009) Algae of the Sefunim Cave (Israel): species diversity affected by light, humidity and rock stresses. Int J Algae 11:99–116CrossRefGoogle Scholar
  97. Walochnik J, Mulec J (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp nov. Acta Protozool 48:25–33Google Scholar
  98. Whippo C, Hangarter R (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur J Phycol 47:341–354CrossRefGoogle Scholar
  100. Zammit G, Sanchez-Moral S, Albertano P (2011) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409:2773–2782PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zucconi L, Gagliardi M, Isola D et al (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeter Biodegr 70:40–46CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Karst Research InstituteResearch Centre of the Slovenian Academy of Sciences and ArtsPostojnaSlovenia
  2. 2.UNESCO Chair on Karst EducationUniversity of Nova GoricaVipavaSlovenia

Personalised recommendations