Abstract
Oligotrophic caves are characterized by very limited sources of organic material and simplified trophic structure due to their predominant isolation from surface ecosystems. Trophic structure of caves depends on their connectivity and interactions with the epigean environment. The food base for biota in nutrient poor caves is mostly confined to organic substances encompassed in percolating water, which also mediates transport of microbes and microfauna into subterranean habitats. Many of the cave microbes are genetically divergent from surface microbes and adapted to the aphotic and oligotrophic cave environment. In nutrient-poor caves heterotrophic bacteria dominate accompanied by a number of chemoautotrophs that gain energy from inorganic chemicals through chemosynthesis and fix inorganic carbon. Chemoautotrophs may thus impact many geological or geochemical processes in subterranean systems and serve as the food source for microbivorous and omnivorous subterranean animals. In caves, food scarcity acts as a selective force and requires evolutionary adaptations in animals related to their morphological and biological traits. In warmer regions of the globe, oligotrophic habitats are characterized by high proportions of the community being troglobiotic or stygobiotic. The amount and nature of the food supply control the presence of troglo- and stygobionts and the overall composition of animal assemblages.
This is a preview of subscription content, access via your institution.
Buying options
References
Albuquerque EF, Coineau N (2004) Interstitial habitats (aquatic). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 979–983
Andersen T, Baranov V, Hagenlund LK et al (2016) Blind flight? A new troglobiotic orthoclad (Diptera, Chironomidae) from the Lukina Jama – Trojama Cave in Croatia. PLoS One 11:e0152884
Aubrecht R, Barrio-Amorós CL, Breure ASH et al (2012) Venezuelan tepuis: their caves and biota. Acta Geologica Slovaca – Monograph. Comenius University, Bratislava
Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20
Barton HA, Taylor NM, Kreate MP et al (2007) The impact of host rock geomicrobiology on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104
Barton HA, Giarrizzo JG, Suarez P et al (2014) Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front Microbiol 5:1–14
Bedek J, Lukić M, Jalžić B et al (2012) Subterranean community from Lukina jama – Trojama Cave System, the deepest cave in Dinaric Karst (Northern Velebit Mt., Croatia). In: Kováč Ľ, Uhrin M, Mock A, Ľuptáčik P (eds) Abstract book, 21st international conference on subterranean biology, 2–7 September 2012, Košice, Slovakia. P. J. Šafárik University, Košice, pp 26–27
Christiansen KA (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537
Christiansen KA (2012) Morphological adaptations. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 517–528
Cuezva S, Sanchez-Moral S, Saiz-Jimenez C et al (2009) Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int J Speleol 38:83–92
Culver DC (1982) Cave life – evolution and ecology. Harvard University Press, Cambridge, MA
Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford
Culver DC, Brancelj A, Pipan T (2012) Epikarst communities. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 288–295
De Mandal S, Chatterjee R, Kumar NS (2017) Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol 17:90
Deharveng L (2004a) Asia, Southeast: biospeleology. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 229–234
Deharveng L (2004b) Insecta: Apterygota. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 962–965
Deharveng L, Bedos A (2000) The cave fauna of Southeast Asia, origin, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 603–632
Derka T, Fedor P (2010) Hydrolutos breweri sp. n., a new aquatic Lutosini species (Orthoptera: Anostostomatidae) from Churí-tepui (Chimantá Massif, Venezuela). Zootaxa 2653:51–59
Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922
Engel AS (2012) Microbes. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 490–499
Fenolio D (2016) Life in the dark. Illuminating biodiversity in the shadowy faunts of planet Earth. John Hopkins University Press, Baltimore, MD
Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. BioScience 52:473–481
Hervant F, Malard F (2012) Responses to low oxygen. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 651–658
Hoese G, Addison A, Toulkeridis T et al (2015) Observation of the catfish Chaetostoma microps climbing in a cave in Tena, Ecuador. Subt Biol 15:29–35
Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77
Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218
Humphreys WF (2000a) Background and glossary. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 3–14
Humphreys WF (2000b) The hypogean fauna of the Cape Range Peninsula and Barrow Island, Northwestern Australia. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 581–601
Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 159–188
Hüppop K (2012) Adaptation to low food. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 1–9
Juberthie C (1984) La colonisation du milieu souterrain: théories et modéles, relations avec la spéciation et l’évolution souterraine. Mém Biospéol 11:65–102
Klimchouk A, Palmer AN, De Waele J et al (2017) Hypogene karst regions and caves of the world. Springer, Cham
Kováč Ľ, Elhottová D, Mock A et al (2014) The cave biota of Slovakia. Speleologia Slovaca 5. State Nature Conservancy SR, Slovak Caves Administration, Liptovský Mikuláš
Moldovan OT (2004) Adaptation: morphological (internal). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 19–22
Moldovan OT, Jalžić B, Erichsen E (2004) Adaptation of the mouthparts in some subterranean Cholevinae (Coleoptera, Leiodidae). Natura Croatica 13:1–18
Northup DA, Lavoie KH (2004) Microorganisms in caves. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 1083–1089
Oliveira C, Gunderman L, Coles CA et al (2017) 16S rRNA gene-based metagenomic analysis of Ozark cave Bacteria. Diversity 9:31
Ortiz M, Legatski A, Neilson JW et al (2014) Making a living whiles tarving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491
Palmer AN (2011) Distinction between epigenic and hypogenic maze caves. Geomorphol 134:9–22
Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290
Poulson TL (2012) Food sources. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 323–334
Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 231–249
Romero A (2009) Cave biology – life in darkness. Cambridge University Press, Cambridge, NY
Sendra A, Reboleira ASPS (2012) The world’s deepest subterranean community – Krubera-Voronja Cave (Western Caucasus). Int J Speleol 41:221–230
Sendra A, Garay P, Ortuño VM et al (2014) Hypogenic versus epigenic subterranean ecosystem: lessons from eastern Iberian Peninsula. Int J Speleol 43:253–264
Simon KS, Pipan T, Culver DC (2007a) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284
Simon KS, Pipan T, Culver DC (2007b) Spatial and temporal heterogeneity in the flux of organic carbon in caves. In: Groundwater and ecosystems, International Association of Hydrogeologists, Lisbon
Sket B (2004) The cave hygropetric – a little known habitat and its inhabitants. Arch Hydrobiol 160:413–425
Sket B (2012) Diversity patterns in the Dinaric Karst. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 228–238
Thibaud J-M, Deharveng L (1994) Collembola. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Moulis-Bucarest, pp 267–276
Timmermann M, Schlupp I, Plath M (2004) Shoaling behaviour in a surface-dwelling and a cave-dwelling population of a barb Garra barreimiae (Cyprinidae, Teleostei). Acta Ethol 7:59–64
Trajano E, Mugue N, Krejca J et al (2002) Habitat, distribution, ecology and behavior of cave balitorids from Thailand (Teleostei: Cypriniformes). Ichthyol Explor Fres 13:169–184
Trontelj P (2012) Natural selection. In: White WB, Culver DC (eds) Encyclopedia of caves. Elsevier, Waltham, MA, pp 543–549
Weber A (2000) Fish and amphibian. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 109–132
Acknowledgments
During writing this chapter, the author was supported from project of the Slovak Development and Research Agency APVV-17-0477 and the Slovak Scientific Grant Agency VEGA 1/0346/18. I am very indebted to Oana T. Moldovan, Stuart Halse and Francis G. Howarth for the useful suggestions and comments that improved the quality of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kováč, Ľ. (2018). Caves as Oligotrophic Ecosystems. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-98852-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98850-4
Online ISBN: 978-3-319-98852-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)