Methanogenic and Bacterial Endosymbionts of Free-Living Anaerobic Ciliates

Part of the Microbiology Monographs book series (MICROMONO, volume 19)


Trimyema compressum thrives in anoxic freshwater environments in which it preys on bacteria and grows with fermentative metabolisms. Like many anaerobic protozoa, instead of mitochondria, T. compressum possess hydrogenosomes, which are hydrogen-producing, energy-generating organelles characteristic of anaerobic protozoa and fungi. The cytoplasm of T. compressum harbours hydrogenotrophic methanogens that consume the hydrogen produced by hydrogenosome, which confers an energetic advantage to the host ciliate. Symbiotic associations between methanogenic archaea and Trimyema ciliates are thought to be established independently and/or repeatedly in their evolutional history. In addition to methanogenic symbionts, T. compressum houses bacterial symbiont TC1 whose function is unknown in its cytoplasm. Recently, we analysed whole-genome sequence of TC1 symbiont to investigate its physiological function in the tripartite symbiosis and found that fatty acid synthesis fab operon of TC1 symbiont lacked typical transcriptional repressor, which is normally coded on the upstream of the fab operon. The sequence data suggested that TC1 symbiont contributes to host Trimyema by the synthesis of fatty acid or its derivative. In this review, we summarize the early works and recent progress of the studies on Trimyema ciliates, including a stably cultivable model protozoa T. compressum, and discuss about symbiotic associations in oxygen-scarce environments.


Symbiosis Ciliate Methanogen Hydrogenosome Hydrogen 


  1. Augustin H, Foissner W, Adam H (1987) Revision of the genera Acineria, Trimyema and Trochiliopsis (Protozoa, Ciliophora). Bull Br Mus Nat Hist (Zool) 52:197–224Google Scholar
  2. Baumgartner M, Stetter KO, Foissner W (2002) Morphological, small subunit rRNA, and physiological characterization of Trimyema minutum (Kahl, 1931), an anaerobic ciliate from submarine hydrothermal vents growing from 28°C to 52°C. J Eukaryot Microbiol 49:227–238CrossRefGoogle Scholar
  3. Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SW, van Hellemond JJ, Ricard G, Huynen M, Tielens AG, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399CrossRefGoogle Scholar
  4. Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79CrossRefGoogle Scholar
  5. Broers CA, Stumm CK, Vogels GD (1991) Axenic cultivation of the anaerobic free-living ciliate Trimyema compressum. J Protozool 38:507–511CrossRefGoogle Scholar
  6. Cho BC, Park JS, Xu K, Choi JK (2008) Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. J Eukaryot Microbiol 55:417–426CrossRefGoogle Scholar
  7. Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754PubMedPubMedCentralGoogle Scholar
  8. Embley TM, Finlay BJ (1993) Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie Van Leeuwenhoek 64:261–271CrossRefGoogle Scholar
  9. Embley TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235CrossRefGoogle Scholar
  10. Embley TM, Finlay BJ, Thomas RH, Dyal PL (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138:1479–1487CrossRefGoogle Scholar
  11. Esteban G, Guhl BE, Clarke KJ, Embley TM, Finlay BJ (1993) Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 29:262–270PubMedGoogle Scholar
  12. Fenchel T, Finlay BJ (1991) Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. J Protozool 38:18–22CrossRefGoogle Scholar
  13. Finlay BJ, Embley TM, Fenchel T (1993) A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J Gen Microbiol 139:371–378CrossRefGoogle Scholar
  14. Gao F, Huang J, Zhao Y, Li L, Liu W, Miao M, Zhang Q, Li J, Yi Z, El-Serehy HA, Warren A, Song W (2017) Systematic studies on ciliates (Alveolata, Ciliophora) in China: progress and achievements based on molecular information. Eur J Protistol 61:409–423CrossRefGoogle Scholar
  15. Goosen NK, Horemans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170CrossRefGoogle Scholar
  16. Goosen N, Wagener S, Stumm CK (1990a) A comparison of two strains of the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:187–192CrossRefGoogle Scholar
  17. Goosen NK, Van der Drift C, Stumm CK, Vogels CD (1990b) End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol Lett 69:171–176CrossRefGoogle Scholar
  18. Hackstein JHP, Vogels GD (1997) Endosymbiotic interactions in anaerobic protozoa. Antonie Van Leeuwenhoek 71:151–158CrossRefGoogle Scholar
  19. Hackstein JHP, de Graaf RM, van Hellemond JJ, Tielens AGM (2008a) Hydrogenosomes of anaerobic ciliates. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, pp 97–112CrossRefGoogle Scholar
  20. Hackstein JHP, Baker SE, van Hellemond JJ, Tielens AGM (2008b) Hydrogenosomes of anaerobic chytrids: an alternative way to adapt to anaerobic environments. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, pp 148–162Google Scholar
  21. Holler S, Pfennig N (1991) Fermentation products of the anaerobic ciliate Trimyema compressum in monoxenic cultures. Arch Microbiol 156:327–334CrossRefGoogle Scholar
  22. Holler S, Pfennig N, Neunlist S, Rohmer M (1993) Effect of a non-methanogenic symbiont and exogenous stigmasterol on the viability and tetrahymanol content of the anaerobic ciliate Trimyema compressum. Eur J Protistol 29:42–48CrossRefGoogle Scholar
  23. Lackey JB (1925) Studies on the biology of sewage disposal. N J Agr Exp Sta Bull 417:1–39Google Scholar
  24. Lewis WH, Sendra KM, Embley TM, Esteban GF (2018) Morphology and phylogeny of a new species of anaerobic ciliate, Trimyema finlayi n. sp. with endosymbiotic methanogens. Front Microbiol 9:140CrossRefGoogle Scholar
  25. McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26CrossRefGoogle Scholar
  26. Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382CrossRefGoogle Scholar
  27. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889CrossRefGoogle Scholar
  28. Nerad TA, Schaffer SA, Small EB, Mangold LA (1995) Trimyema shoalsia sp. n., an anaerobic, microaerotolerant marine ciliate from Appledore Island, Gulf of Maine, USA. Acta Protozool 34:289–298Google Scholar
  29. Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. University Park Press, BaltimoreGoogle Scholar
  30. Park JS, Simpson AG (2015) Diversity of heterotrophic protists from extremely hypersaline habitats. Protist 166:422–437CrossRefGoogle Scholar
  31. Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci U S A 76:847–851CrossRefGoogle Scholar
  32. Schulz S, Wagener S, Pfennig N (1990) Utilization of various chemotrophic and phototrophic bacteria as food by the anaerobic ciliate Trimyema compressum. Eur J Protistol 26:122–131CrossRefGoogle Scholar
  33. Shinzato N, Watanabe I, Meng XY, Sekiguchi Y, Tamaki H, Matsui T, Kamagata Y (2007) Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol 54:627–636CrossRefGoogle Scholar
  34. Shinzato N, Aoyama H, Saitoh S, Nikoh N, Nakano K, Shimoji M, Shinzato M, Satou K, Teruya K, Hirano T, Yamada T, Nobu MK, Tamaki H, Shirai Y, Park S, Narihiro T, Liu WT, Kamagata Y (2016) Complete genome sequence of the intracellular bacterial symbiont TC1 in the anaerobic ciliate Trimyema compressum. Genome Announc 4:e01032–e01016CrossRefGoogle Scholar
  35. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36CrossRefGoogle Scholar
  36. Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 38:865–891CrossRefGoogle Scholar
  37. Stams AJ (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66:271–294CrossRefGoogle Scholar
  38. Van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95CrossRefGoogle Scholar
  39. Van Bruggen JJA, Zwart KB, Van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7CrossRefGoogle Scholar
  40. Van Bruggen JJA, Zwart KB, Hermans JGE, Van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterisation of Methanoplanus endosymbiosus sp. nov. an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374CrossRefGoogle Scholar
  41. Van Bruggen JJA, Van Rens GLM, Geertman EJM, Van Hove EM, Stumm CK (1988) Isolation of a methanogenic endosymbiont of the sapropelic ameba Pelomyxa palustris Greeff. J Protozool 35:20–23CrossRefGoogle Scholar
  42. Van Hoek AH, Van Alen TA, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258CrossRefGoogle Scholar
  43. Wagener S, Pfennig N (1987) Monoxenic culture of the anaerobic ciliate Trimyema compressum lackey. Arch Microbiol 149:4–11CrossRefGoogle Scholar
  44. Wagener S, Bardele CF, Pfennig N (1990) Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:496–501CrossRefGoogle Scholar
  45. Yamada K, Kamagata Y, Nakamura K, Inamori Y, Nakamura I (1994) Selectivity of food bacteria for the growth of anaerobic ciliate Trimyema compressum. Arch Microbiol 161:229–233CrossRefGoogle Scholar
  46. Yamada K, Kamagata Y, Nakamura K (1997) The effect of endosymbiotic methanogens on the growth and metabolic profile of the anaerobic free-living ciliate Trimyema compressum. FEMS Microbiol Lett 149:129–132CrossRefGoogle Scholar
  47. Zwart KB, Goosen NK, Van Schijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta, and Trimyema compressum. J Gen Microbiol 134:2165–2170Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
  2. 2.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations