Abstract
Ciliated protozoa are the principal component of the rumen microbiota. They contribute significantly the digestion of ruminants. As anaerobic fermentative microorganisms, rumen ciliated protozoa produce a significant amount of hydrogen and formate. Methanogenic archaea therefore associate closely with rumen ciliated protozoa. The presence of episymbiotic methanogens in rumen ciliated protozoa has been demonstrated as early as 1980s by microscopy. The number of ciliate-associated methanogens increases from the 100 level to 104/cell of ciliates after feeding. Enhancement of hydrogen and/or formate production from the ciliates by feeding attracts free-living methanogens. There are a couple of studies about the phylogeny of the ciliate-associated methanogens based on a molecular ecological approach. A range of methanogenic archaeal 16S rDNA, representing Methanobacteriales, Methanomicrobiales and Methanosarcinales, have been detected as ciliate-associated methanogens. However, it is still difficult to draw a conclusion about a potentially specific interaction between a particular ciliate species and a species of methanogenic archaea from these limited studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belanche A, De la Fuente G, Newbold CJ (2014) Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol 90:663–677
Chagan I, Tokura M, Jouany JP, Ushida K (1999) Detection of methanogenic archaea associated with rumen ciliate protozoa. J Gen Appl Microbiol 45:305–308
Eadie JM (1967) Studies on the ecology of certain rumen ciliate protozoa. J Gen Microbiol 49:173–194
Embley TM, Finlay BJ (1993) Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie van Leeuwenhoek 64:261–271
Evans PN, Hinds LA, Sly LI, McSweeney CS, Morrison M, Wright ADG (2009) Community composition and density of methanogens in the foregut of the Tammar Wallaby (Macropus eugenii). Appl Environ Microbiol 75:2598–2602
Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–161
Hoffman RR (1973) Ruminant stomach. East African Literature Bureau, Nairobi, Kenya
Holler S, Pfennig N (1991) Fermentation products of the anaerobic ciliate Trimyema compressum in monoxenic cultures. Arch Microbiol 156:327–334
Hungate RE (1966) The rumen and its microbes. Academic Press, New York
Irbis C, Ushida K (2004) Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 50:203–212
Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625
Newbold CJ, Lassalas B, Jouany JP (1995) The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 21:230–234
Newbold CJ, Ushida K, Morvan B, Fonty G, Jouany JP (1996) The role of ciliate protozoa in the lysis of methanogenic bacteria in rumen fluid. Lett Appl Microbiol 23:421–425
Ohene-Adjei S, Teather RM, Ivanj M, Forster RJ (2007) Postinoculation protozoan establishment and association patterns of Methanogenic archaea in the ovine rumen. Appl Environ Microbiol 73:4609–4618
Rea S, Bowman JP, Popovski S, Pimm C, Wright ADG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456
Regensbogenova M, McEwan NR, Javorsky P, Kisidayova S, Michalowski T, Newbold CJ, Hackstein JHP, Pristas P (2004) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett 238:307–313
Sharp R, Ziemer CJ, Stern MD, Stahl DA (1998) Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol 36:71–78
Stumm CK, Gijzen HJ, Vogels GD (1982) Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 47:95–99
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
Tokura M, Ushida K, Miyazaki K, Kojima Y (1997) Methanogens associated with rumen ciliates. FEMS Microbiol Ecol 22:137–143
Tokura M, Tajima K, Ushida K (1999a) Isolation of Methanobrevibacter sp. as a ciliate-associated ruminal methanogen. J Gen Appl Microbiol 45:43–47
Tokura M, Chagan I, Ushida K, Kojima Y (1999b) Phylogenetic study of methanogens associated with rumen ciliates. Curr Microbiol 39:123–128
Tymensen LD, Beauchemin KA, McAllister TA (2012) Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 158:1808–1817
Ushida K, Jouany JP (1996) Methane production from ciliated rumen protozoa and its effect on protozoal activity. Lett Appl Microbiol 23:129–132
Ushida K, Jouany JP, Demeyer DI (1991) Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants. Academic Press, San Diego, pp 626–655
Ushida K, Tokura M, Itabashi H, Takenaka A (1996) Ciliate protozoa and ruminal methanogenesis. In: Onodera R, Itabashi H, Ushida K, Yano H, Sasaki Y (eds) Rumen microbes and digestive physiology in ruminants. Japan Scientific Society Press/Karger, Tokyo, pp 209–220
Ushida K, Newbold CJ, Jouany JP (1997) Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. J Gen Appl Microbiol 43:129–131
van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258
Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612
Wagener S, Bardele CF, Pfennig N (1990) Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:496–501
Williams AG, Coleman GS (1991) The rumen protozoa. Springer, London
Wolin MJ (1975) Interactions between the bacterial species of the rumen. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminant. University of New England Publ. Unit, Armidale, Australia
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ushida, K. (2018). Symbiotic Methanogens and Rumen Ciliates. In: Hackstein, J. (eds) (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-98836-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-98836-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98835-1
Online ISBN: 978-3-319-98836-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)