Skip to main content

Introduction

  • Chapter
  • First Online:
Asymptotically Safe Gravity

Part of the book series: Springer Theses ((Springer Theses))

  • 409 Accesses

Abstract

Quantum Field Theory is the standard framework for the description of the weak, electromagnetic and strong interactions, and results in an extremely well tested theory known as Standard Model (SM) of particle physics. Similarly, General Relativity provides a successful description of the gravitational interaction and most of its predictions have been confirmed by observations. Although Standard Model and General Relativity show a very good agreement with experimental observations, there are several inconsistencies and unsolved problems suggesting that these theories are incomplete and may not be able to describe all fundamental aspects of our universe. For instance, the SM cannot explain the observed baryon asymmetry characterizing the observable universe and cannot incorporate the neutrino masses, required to explain neutrino flavor oscillation, in a natural way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Weinberg, Critical phenomena for field theorists, in Proceedings 14th International School of Subnuclear Physics, Erice (1976), p. 1. https://doi.org/10.1007/978-1-4684-0931-4_1 (cit. on p. 4)

    Google Scholar 

  2. K.G. Wilson, J. Kogut, The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75–199 (1974). https://doi.org/10.1016/0370-1573(74)90023-4 (cit. on p. 4)

    Article  ADS  Google Scholar 

  3. K.G. Wilson, Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971). https://doi.org/10.1103/PhysRevB.4.3174 (cit. on p. 4)

    Article  ADS  Google Scholar 

  4. F.J. Wegner, A. Houghton, Renormalization group equation for critical phenomena. Phys. Rev. A 8, 401–412 (1973). https://doi.org/10.1103/PhysRevA.8.401 (cit. on p. 5)

    Article  ADS  Google Scholar 

  5. C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B 301, 90–94 (1993). https://doi.org/10.1016/0370-2693(93)90726-X (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  6. T.R. Morris, The exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411–2449 (1994). https://doi.org/10.1142/S0217751X94000972. eprint: hep-ph/9308265 (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 417, 181–214 (1994). https://doi.org/10.1016/0550-3213(94)90543-6 (cit. on p. 5)

    Article  ADS  Google Scholar 

  8. M. Reuter, Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971–985 (1998). https://doi.org/10.1103/PhysRevD.57.971. eprint: hep-th/9605030 (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Souma, Non-trivial ultraviolet fixed point in quantum gravity. Prog. Theor. Phys. 102, 181–195 (1999). https://doi.org/10.1143/PTP.102.181. eprint: hep-th/9907027 (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  10. O. Lauscher, M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 65(2), 025013 (2002). https://doi.org/10.1103/PhysRevD.65.025013. eprint: hep-th/0108040 (cit. on p. 5)

  11. M. Reuter, F. Saueressig, Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65(6), 065016 (2002). https://doi.org/10.1103/PhysRevD.65.065016. eprint: hep-th/0110054 (cit. on p. 5)

  12. D.F. Litim, Fixed points of quantum gravity. Phys. Rev. Lett. 92(20), 201301 (2004). https://doi.org/10.1103/PhysRevLett.92.201301. eprint: hep-th/0312114 (cit. on p. 5)

  13. O. Lauscher, M. Reuter, Flow equation of Quantum Einstein Gravity in a higher-derivative truncation. Phys. Rev. D 66(2), 025026 (2002). https://doi.org/10.1103/PhysRevD.66.025026. eprint: hep-th/0205062 (cit. on p. 5)

  14. A. Codello, R. Percacci, C. Rahmede, Ultraviolet properties of f(R)-gravity. Int. J. Mod. Phys. A 23, 143–150. https://doi.org/10.1142/S0217751X08038135. arXiv:0705.1769 [hep-th] (cit. on p. 5)

    Article  ADS  Google Scholar 

  15. P.F. Machado, F. Saueressig, On the renormalization group flow of f(R)-gravity. Phys. Rev.D 77, 124045 (2008). https://doi.org/10.1103/PhysRevD.77.124045. eprint:arXiv:0712.0445 (cit. on p. 5)

  16. A. Codello, R. Percacci, C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. 324, 414–469 (2009). https://doi.org/10.1016/j.aop.2008.08.008. arXiv:0805.2909 [hep-th] (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Falls et al., Further evidence for asymptotic safety of quantum gravity. Phys. Rev. D 93(10), 104022 (2016). https://doi.org/10.1103/PhysRevD.93.104022 (cit. on p. 5)

  18. M. Demmel, F. Saueressig, O. Zanusso, RG flows of Quantum Einstein Gravity in the linear-geometric approximation. Ann. Phys. 359, 141–165 (2015). https://doi.org/10.1016/j.aop.2015.04.018. arXiv:1412.7207 [hep-th] (cit. on p. 5)

    Article  MathSciNet  Google Scholar 

  19. A. Codello, R. Percacci, Fixed points of higher-derivative gravity. Phys. Rev. Lett. 97(22), 221301 (2006). https://doi.org/10.1103/PhysRevLett.97.221301. eprint: hep-th/0607128 (cit. on p. 5)

  20. D. Benedetti, P.F. Machado, F. Saueressig, Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. A 24, 2233–2241 (2009). https://doi.org/10.1142/S0217732309031521. arXiv:0901.2984 [hep-th] (cit. on p. 5)

    Article  ADS  Google Scholar 

  21. D. Benedetti, P.F. Machado, F. Saueressig, Taming perturbative divergences in asymptotically safe gravity. Nucl. Phys. B 824, 168–191 (2010). https://doi.org/10.1016/j.nuclphysb.2009.08.023. arXiv:0902.4630 [hep-th] (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Saueressig et al., Higher derivative gravity from the universal renormalization group machine, in PoS EPS-HEP2011 (2011), p. 124. arXiv:1111.1743 [hep-th] (cit. on p. 5)

  23. D. Benedetti, F. Caravelli, The local potential approximation in quantum gravity. J. High Energy Phys. 6, 17 (2012). https://doi.org/10.1007/JHEP06(2012)017. arXiv:1204.3541 [hep-th] (cit. on p. 5)

  24. M. Demmel, F. Saueressig, O. Zanusso, Fixed-functionals of three dimensional Quantum Einstein Gravity. J. High Energy Phys. 11, 131 (2012). https://doi.org/10.1007/JHEP11(2012)131. arXiv: 1208.2038 [hep-th] (cit. on p. 5)

  25. J.A. Dietz, T.R. Morris, Asymptotic safety in the f(R) approximation. J. High Energy Phys. 1, 108 (2013). https://doi.org/10.1007/JHEP01(2013)108. arXiv:1211.0955 [hep-th] (cit. on p. 5)

  26. M. Demmel, F. Saueressig, O. Zanusso, Fixed functionals in asymptotically safe gravity, in Proceedings of the 13th Marcel Grossmann Meeting, Stockholm, Sweden (2015), pp. 2227–2229. https://doi.org/10.1142/9789814623995_0404. arXiv:1302.1312 [hep-th] (cit. on p. 5)

  27. J.A. Dietz, T.R. Morris, Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety. J. High Energy Phys. 7, 64 (2013). https://doi.org/10.1007/JHEP07(2013)064 (cit. on p. 5)

  28. D. Benedetti, F. Guarnieri, Brans-Dicke theory in the local potential approximation. New J. Phys. 16(5), 053051 (2014). https://doi.org/10.1088/1367-2630/16/5/053051. arXiv:1311.1081 [hep-th] (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Demmel, F. Saueressig, O. Zanusso, RG flows of Quantum Einstein Gravity on maximally symmetric spaces. J. High Energy Phys. 6, 26 (2014). https://doi.org/10.1007/JHEP06(2014)026. arXiv:1401.5495 [hep-th] (cit. on p. 5)

  30. R. Percacci, G.P. Vacca, Search of scaling solutions in scalar-tensor gravity. Eur. Phys. J. C 75, 188 (2015). https://doi.org/10.1140/epjc/s10052-015-3410-0. arXiv:1501.00888 [hep-th] (cit. on p. 5)

  31. J. Borchardt, B. Knorr, Global solutions of functional fixed point equations via pseudospectral methods. Phys. Rev. D 91(10), 105011 (2015). https://doi.org/10.1103/PhysRevD.91.105011. arXiv:1502.07511 [hep-th] (cit. on p. 5)

  32. M. Demmel, F. Saueressig, O. Zanusso, A proper fixed functional for four-dimensional Quantum Einstein Gravity. J. High Energy Phys. 8, 113 (2015). https://doi.org/10.1007/JHEP08(2015)113. arXiv:1504.07656 [hep-th] (cit. on p. 5)

  33. N. Ohta, R. Percacci, G.P. Vacca, Flow equation for f(R) gravity and some of its exact solutions. Phys. Rev. D 92(6), 061501 (2015). https://doi.org/10.1103/PhysRevD.92.061501. arXiv:1507.00968 [hep-th] (cit. on p. 5)

  34. N. Ohta, R. Percacci, G.P. Vacca, Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization. Eur. Phys. J. C 76, 46 (2016). https://doi.org/10.1140/epjc/s10052-016-3895-1. arXiv:1511.09393 [hep-th] (cit. on p. 5)

  35. P. Labus, T.R. Morris, Z.H. Slade, Background independence in a background dependent renormalization group. Phys. Rev. D 94(2), 024007 (2016). https://doi.org/10.1103/PhysRevD.94.024007. arXiv:1603.04772 [hep-th] (cit. on p. 5)

  36. J.A. Dietz, T.R. Morris, Z.H. Slade, Fixed point structure of the conformal factor field in quantum gravity. Phys. Rev. D 94(12), 124014 (2016). https://doi.org/10.1103/PhysRevD.94.124014. arXiv:1605.07636 [hep-th] (cit. on p. 5)

  37. P. Horava, Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 102(16), 161301 (2009). https://doi.org/10.1103/PhysRevLett.102.161301. arXiv:0902.3657 [hep-th] (cit. on p. 5)

  38. J. Ambjrn, J. Jurkiewicz, R. Loll, The spectral dimension of the universe is scale dependent. Phys. Rev. Lett. 95(17), 171301 (2005). https://doi.org/10.1103/PhysRevLett.95.171301. eprint: hep-th/0505113 (cit. on p. 5)

  39. L. Modesto, Fractal spacetime from the area spectrum. Class. Quantum Gravity 26(24), 242002 (2009). https://doi.org/10.1088/0264-9381/26/24/242002. arXiv:0812.2214 [gr-qc] (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Amelino-Camelia et al., Planck-scale dimensional reduction without a preferred frame. Phys. Lett. B 736, 317–320 (2014). https://doi.org/10.1016/j.physletb.2014.07.030. arXiv:1311.3135 [gr-qc] (cit. on p. 5)

    Article  ADS  MathSciNet  Google Scholar 

  41. C.J. Isham, Canonical quantum gravity and the problem of time (1992), pp. 0157–288. arXiv:gr-qc/9210011 [gr-qc] (cit. on p. 5)

  42. E. Manrique, S. Rechenberger, F. Saueressig, Asymptotically safe Lorentzian gravity. Phys. Rev. Lett. 106(25), 251302 (2011). https://doi.org/10.1103/PhysRevLett.106.251302. arXiv:1102.5012 [hep-th] (cit. on p. 6)

  43. S. Rechenberger, F. Saueressig, A functional renormalization group equation for foliated spacetimes. J. High Energy Phys. 3, 10 (2013). https://doi.org/10.1007/JHEP03(2013)010. arXiv:1212.5114 [hep-th] (cit. on p. 6)

  44. R. Loll, Discrete Lorentzian quantum gravity. Nucl. Phys. B Proc. Suppl. 94, 96–107 (2001). https://doi.org/10.1016/S0920-5632(01)00957-4. eprint: hep-th/0011194 (cit. on p. 6)

    Article  ADS  Google Scholar 

  45. A. Bonanno, F. Saueressig, Asymptotically safe cosmology—a status report. Comptes Rendus Phys. 18, 254–264 (2017). https://doi.org/10.1016/j.crhy.2017.02.002. arXiv:1702.04137 [hep-th] (cit. on p. 6)

    Article  ADS  Google Scholar 

  46. J. Biemans, A. Platania, F. Saueressig, Quantum gravity on foliated spacetimes: asymptotically safe and sound. Phys. Rev. D 95(8), 086013 (2017). https://doi.org/10.1103/PhysRevD.95.086013. arXiv:1609.04813 [hep-th] (cit. on pp. 6, 7, 9)

  47. J. Biemans, A. Platania, F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems. J. High Energy Phys. 5, 93 (2017). https://doi.org/10.1007/JHEP05(2017)093. arXiv:1702.06539 [hep-th] (cit. on pp. 6, 9)

  48. A. Platania, F. Saueressig, Functional renormalization group flows on Friedman–Lemaitre–Robertson–Walker backgrounds (2017). arXiv:1710.01972 [hep-th] (cit. on pp. 7, 9)

  49. Planck Collaboration et al., Planck 2015 results. XIII. Cosmological parameters. A&A 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589 (cit. on pp. 7, 8)

  50. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc] (cit. on p. 7)

  51. S. Coleman, E. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973). https://doi.org/10.1103/PhysRevD.7.1888 (cit. on p. 7)

    Article  ADS  Google Scholar 

  52. A.B. Migdal, Vacuum polarization in strong non-homogeneous fields. Nucl. Phys. B 52, 483–505 (1973). https://doi.org/10.1016/0550-3213(73)90575-0 (cit. on p. 7)

    Article  ADS  MathSciNet  Google Scholar 

  53. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. I. Phys. Rev. D 8, 3633–3652 (1973). https://doi.org/10.1103/PhysRevD.8.3633 (cit. on p. 7)

    Article  ADS  Google Scholar 

  54. H. Pagels, E. Tomboulis, Vacuum of the quantum Yang-Mills theory and magnetostatics. Nucl. Phys. B 143, 485–502 (1978). https://doi.org/10.1016/0550-3213(78)90065-2 (cit. on p. 7)

    Article  ADS  MathSciNet  Google Scholar 

  55. S.G. Matinyan, G.K. Savvidy, Vacuum polarization induced by the intense gauge field. Nucl. Phys. B 134, 539–545 (1978). https://doi.org/10.1016/0550-3213(78)90463-7 (cit. on p. 7)

    Article  ADS  Google Scholar 

  56. S.L. Adler, Short-distance perturbation theory for the leading logarithm models. Nucl. Phys. B 217, 381–394 (1983). https://doi.org/10.1016/0550-3213(83)90153-0 (cit. on p. 7)

    Article  ADS  Google Scholar 

  57. A. Bonanno, M. Reuter, Entropy signature of the running cosmological constant. JCAP 8, 024 (2007). https://doi.org/10.1088/1475-7516/2007/08/024. arXiv:0706.0174 [hep-th] (cit. on p. 8)

    Article  Google Scholar 

  58. A. Bonanno, A. Platania, Asymptotically safe inflation from quadratic gravity. Phys. Lett. B 750, 638–642 (2015). https://doi.org/10.1016/j.physletb.2015.10.005. arXiv:1507.03375 [gr-qc] (cit. on pp. 8, 9)

    Article  ADS  Google Scholar 

  59. A. Bonanno, A. Platania, Asymptotically safe \({{\rm R}+{{\rm R}^2}}\) gravity, in PoS CORFU2015 (2016), p. 159 (cit. on pp. 8, 9)

    Google Scholar 

  60. A. Kogut et al., The primordial inflation explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations. JCAP 7, 025 (2011). https://doi.org/10.1088/1475-7516/2011/07/025. arXiv:1105.2044 (cit. on p. 8)

    Article  Google Scholar 

  61. T. Matsumura et al., Mission design of LiteBIRD. J. Low Temp. Phys. 176, 733–740 (2014). https://doi.org/10.1007/s10909-013-0996-1. arXiv:1311.2847 [astro-ph.IM] (cit. on p. 8)

    Article  ADS  Google Scholar 

  62. CORE Collaboration, F. Finelli et al., Exploring cosmic origins with CORE: inflation. ArXiv e-prints (2016). arXiv:1612.08270 (cit. on p. 8)

  63. A. Bonanno, A. Platania, F. Saueressig, Cosmological bounds on the field content of asymptotically safe gravity-matter models. Phys. Lett. B (2018). https://doi.org/10.1016/j.physletb.2018.06.047. arXiv:1803.02355 [gr-qc] (cit. on pp. 8, 9)

    Article  ADS  MathSciNet  Google Scholar 

  64. F.J. Tipler, On the nature of singularities in general relativity. Phys. Rev. D 15, 942–945 (1977). https://doi.org/10.1103/PhysRevD.15.942 (cit. on p. 8)

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Bonanno, B. Koch, A. Platania, Cosmic censorship in quantum Einstein gravity. Class. Quantum Gravity 34(9), 095012 (2017). https://doi.org/10.1088/1361-6382/aa6788. arXiv:1610.05299 [gr-qc] (cit. on pp. 8, 9)

    Article  ADS  MathSciNet  Google Scholar 

  66. A. Bonanno, B. Koch, A. Platania, Asymptotically safe gravitational collapse: Kuroda-Papapetrou RG-improved model, in PoS CORFU2016 (2017), p. 058 (cit. on pp. 8, 9)

    Google Scholar 

  67. A. Bonanno, B. Koch, A. Platania, Gravitational collapse in Quantum Einstein Gravity. Found. Phys. (2018). https://doi.org/10.1007/s10701-018-0195-7. arXiv:1710.10845 [gr-qc] (cit. on pp. 8, 9)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Benedetta Platania .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Platania, A.B. (2018). Introduction. In: Asymptotically Safe Gravity. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98794-1_1

Download citation

Publish with us

Policies and ethics