Skip to main content

Role of TGF-β in Alcohol-Induced Liver Disease

  • Conference paper
  • First Online:
Alcohol and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1032))

Abstract

Over 90% of hepatocellular carcinoma (HCC) occurs against a background of chronic liver disease or cirrhosis induced from viral hepatitis to alcohol injury. One third of patients with cirrhosis will develop HCC during their lifetime, with a 3–5% annual incidence. However, little is known about the key mechanisms by which toxins mediate DNA damage in the liver. Recent studies support a central role for TGF-β signaling in conferring genomic stability yet the precise mechanism of action and the specific stages of tumor suppression remain unclear (Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ. J Clin Invest 119:3408–3419 (2009); Korc M. J Clin Invest 119:3208–3211 (2009); Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH. Proc Natl Acad Sci U S A 96:14949–14954 (1999)). Furthermore, it has recently been shown that β2SP+/− and β2SP+/−/Smad3+/− mice phenocopy a hereditary human cancer syndrome, the Beckwith-Wiedemann syndrome (BWS), which has an 800 fold risk of cancers including HCC, hepatoblastoma, and a range of liver disorders. Identifying key biological pathways and mechanisms for suppressing alcohol-induced stem cell injury and HCC will be critical for enhancing patient care and the employment of new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollah S, Macias-silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685

    Article  CAS  PubMed  Google Scholar 

  2. Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163

    Article  CAS  PubMed  Google Scholar 

  3. Attisano L, Wrana JL (1998) Mads and Smads in TGF beta signalling. Curr Opin Cell Biol 10:188–194

    Article  CAS  PubMed  Google Scholar 

  4. Barcellos-Hoff MH (2005) Integrative radiation carcinogenesis: interactions between cell and tissue responses to DNA damage. Semin Cancer Biol 15:138–148

    Article  CAS  PubMed  Google Scholar 

  5. Barcellos-Hoff MH, Brooks AL (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 156:618–627

    Article  CAS  PubMed  Google Scholar 

  6. Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107:873–877

    Article  CAS  PubMed  Google Scholar 

  7. Beckwith, J. (1963). Extreme cytomegaly of the adrenal fetal cortex, omphalocele, hyperplasia of kidneys and pancreas, and Leydig-cell hyperplasia: another syndrome? 11th Annual Meeting of Western Society for Pediatric Reserach, Los Angeles

    Google Scholar 

  8. JB B, Donnel WC et al (1964) Hyperplastic fetal visceromegaly mith macroglossia, omphalocele, cytomegaly of adrenal fetal cortex, postnatal somatic gigantism and other abnormalties: newly recognized syndrome. In: Proceedings of the American Pediatric Society

    Google Scholar 

  9. Birchenall-Roberts MC, Fu T, Bang OS, Dambach M, Resau JH, Sadowski CL, Bertolette DC, Lee HJ, Kim SJ, Ruscetti FW (2004) Tuberous sclerosis complex 2 gene product interacts with human SMAD proteins . A molecular link of two tumor suppressor pathways. J Biol Chem 279:25605–25613

    Article  CAS  PubMed  Google Scholar 

  10. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ (2009) Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119:3408–3419

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen RH, Ebner R, Derynck R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–1338

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Lebrun JJ, Vale W (1996) Regulation of transforming growth factor beta- and activin- induced transcription by mammalian mad proteins. Proc Natl Acad Sci U S A 93:12992–12997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Yao ZX, Chen JS, Gi YJ, Munoz NM, Kundra S, Herlong HF, Jeong YS, Goltsov A, Ohshiro K, Mistry NA, Zhang J, Su X, Choufani S, Mitra A, Li S, Mishra B, White J, Rashid A, Wang AY, Javle M, Davila M, Michaely P, Weksberg R, Hofstetter WL, Finegold MJ, Shay JW, Machida K, Tsukamoto H, Mishra L (2016) TGF-beta/beta2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome. J Clin Invest 126:527–542

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ciuclan L, Ehnert S, Ilkavets I, Weng HL, Gaitantzi H, Tsukamoto H, Ueberham E, Meindl-Beinker NM, Singer MV, Breitkopf K, Dooley S (2010) TGF-beta enhances alcohol dependent hepatocyte damage via down-regulation of alcohol dehydrogenase I. J Hepatol 52:407–416

    Article  CAS  PubMed  Google Scholar 

  15. De Groot RP, Kruyt FA, Van Der SaagC PT, Kruijer W (1990) Ectopic expression of c- Jun leads to differentiation of P19 embryonal carcinoma cells. EMBO J 9:1831–1837

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11:467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deheuninck J, Luo K (2009) Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19:47–57

    Article  CAS  PubMed  Google Scholar 

  18. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  19. Dooley S, Ten Dijke P (2012) TGF-beta in progression of liver disease. Cell Tissue Res 347:245–256

    Article  CAS  PubMed  Google Scholar 

  20. Feng XH, Derynck R (1997) A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J 16:3912–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383

    Article  CAS  PubMed  Google Scholar 

  22. Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH (1999) Defects in transforming growth factor-beta signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci U S A 96:14949–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heldin CH, Miyazono K, Ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  CAS  PubMed  Google Scholar 

  24. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’connor MB, Attisano L, Wrana JL (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85:489–500

    Article  CAS  PubMed  Google Scholar 

  25. Kaneda A, Feinberg AP (2005) Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res 65:11236–11240

    Article  CAS  PubMed  Google Scholar 

  26. Katuri V, Tang Y, Li C, Jogunoori W, Deng CX, Rashid A, Sidawy AN, Evans S, Reddy EP, Mishra B, Mishra L (2006) Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression. Oncogene 25:1871–1886

    Article  CAS  PubMed  Google Scholar 

  27. Keeton MR, Curriden SA, Van Zonneveld AJ, Loskutoff DJ (1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 266:23048–23052

    CAS  PubMed  Google Scholar 

  28. Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massague J (1988) Absence of TGF- beta receptors and growth inhibitory responses in retinoblastoma cells. Science 240:196–199

    Article  CAS  PubMed  Google Scholar 

  29. Korc M (2009) Smad4: gatekeeper gene in head and neck squamous cell carcinoma. J Clin Invest 119:3208–3211

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kretzschmar M, Massague J (1998) SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 8:103–111

    Article  CAS  PubMed  Google Scholar 

  31. Kretzschmar M, Doody J, Massague J (1997a) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  CAS  PubMed  Google Scholar 

  32. Kretzschmar M, Liu F, Hata A, Doody J, Massague J (1997b) The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11:984–995

    Article  CAS  PubMed  Google Scholar 

  33. Kumaresan KR, Sridharan DM, Mcmahon LW, Lambert MW (2007) Deficiency in incisions produced by XPF at the site of a DNA interstrand cross-link in Fanconi anemia cells. Biochemistry 46:14359–14368

    Article  CAS  PubMed  Google Scholar 

  34. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53–58

    Article  CAS  PubMed  Google Scholar 

  35. Le Roith D, Scavo L, Butler A (2001) What is the role of circulating IGF-I? Trends Endocrinol Metab 12:48–52

    Article  CAS  PubMed  Google Scholar 

  36. Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang XF (1995) Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem 270:26750–26753

    Article  CAS  PubMed  Google Scholar 

  37. Liu F, Pouponnot C, Massague J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 11:3157–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215–1224

    Article  CAS  PubMed  Google Scholar 

  39. Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, Yao ZX, He AR, Li S, Katz L, Farci P, Mishra L (2012) Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 9:530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Massey VL, Arteel GE (2012) Acute alcohol-induced liver injury. Front Physiol 3:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mcmahon LW, Walsh CE, Lambert MW (1999) Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J Biol Chem 274:32904–32908

    Article  CAS  PubMed  Google Scholar 

  43. Meier D, Schindler D (2011) Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements. PLoS One 6:e22911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller BS, Yee D (2005) Type I insulin-like growth factor receptor as a therapeutic target in cancer. Cancer Res 65:10123–10127

    Article  CAS  PubMed  Google Scholar 

  45. Mishra L, Derynck R, Mishra B (2005) Transforming growth factor-beta signaling in stem cells and cancer. Science 310:68–71

    Article  CAS  PubMed  Google Scholar 

  46. Nishihara A, Hanai JI, Okamoto N, Yanagisawa J, Kato S, Miyazono K, Kawabata M (1998) Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 3:613–623

    Article  CAS  PubMed  Google Scholar 

  47. Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17:520–527

    Article  CAS  PubMed  Google Scholar 

  48. Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD (1986) Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet 74:143–154

    Article  CAS  PubMed  Google Scholar 

  49. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211

    Article  PubMed  PubMed Central  Google Scholar 

  50. Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62

    Article  CAS  PubMed  Google Scholar 

  51. Resnicoff M, Burgaud JL, Rotman HL, Abraham D, Baserga R (1995) Correlation between apoptosis, tumorigenesis, and levels of insulin-like growth factor I receptors. Cancer Res 55:3739–3741

    CAS  PubMed  Google Scholar 

  52. Sachdev D, Yee D (2001) The IGF system and breast cancer. Endocr Relat Cancer 8:197–209

    Article  CAS  PubMed  Google Scholar 

  53. Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S, Croci S, Perdichizzi S, Zambelli D, Serra M, Garcia-Echeverria C, Hofmann F, Picci P (2005) Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP- AEW541 in musculoskeletal tumors. Cancer Res 65:3868–3876

    Article  CAS  PubMed  Google Scholar 

  54. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  55. Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, Ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272:28107–28115

    Article  CAS  PubMed  Google Scholar 

  56. Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L (2003) Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299:574–577

    Article  CAS  PubMed  Google Scholar 

  57. Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fishbein T, Zasloff M, Reddy EP, Mishra B, Mishra L (2005) Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 65:4228–4237

    Article  CAS  PubMed  Google Scholar 

  58. Thenappan A, Shukla V, Abdul Khalek FJ, Li Y, Shetty K, Liu P, Li L, Johnson RL, Johnson L, Mishra L (2011) Loss of transforming growth factor beta adaptor protein beta-2 spectrin leads to delayed liver regeneration in mice. Hepatology 53:1641–1650

    Article  CAS  PubMed  Google Scholar 

  59. Thorburn MJ, Wright ES, Miller CG, Smith-Read EH (1970) Exomphalos- macroglossia-gigantism syndrome in Jamaican infants. Am J Dis Child 119:316–321

    CAS  PubMed  Google Scholar 

  60. Tsukamoto H, Mishra L, Machida K (2014) Alcohol, TLR4-TGF-beta antagonism, and liver cancer. Hepatol Int 8(Suppl 2):408–412

    Article  PubMed  Google Scholar 

  61. Yao ZX, Jogunoori W, Choufani S, Rashid A, Blake T, Yao W, Kreishman P, Amin R, Sidawy AA, Evans SR, Finegold M, Reddy EP, Mishra B, Weksberg R, Kumar R, Mishra L (2010) Epigenetic silencing of beta-spectrin, a TGF-beta signaling/scaffolding protein in a human cancer stem cell disorder: Beckwith-Wiedemann syndrome. J Biol Chem 285:36112–36120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Musci T, Derynck R (1997) The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 7:270–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lopa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jogunoori, W., Mishra, L. (2018). Role of TGF-β in Alcohol-Induced Liver Disease. In: Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H. (eds) Alcohol and Cancer. Advances in Experimental Medicine and Biology, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-319-98788-0_7

Download citation

Publish with us

Policies and ethics