Skip to main content

Glutaraldehyde

  • Chapter
  • First Online:

Abstract

Glutaraldehyde (2%) has bactericidal and yeasticidal activity in 3 min and species-dependent mycobactericidal activity in 5–60 min. Some food-associated fungi, however, are less susceptible. An epidemiological cut-off value to determine acquired resistance has only been proposed for Bacillus spp. (4,000 mg/l). But elevated MIC values suggestive of resistance to glutaraldehyde (MIC ≥ 5,000 mg/l) have been reported for S. Typhimurium, P. aeruginosa, S. aureus, S. mutans, E. coli and B. fragilis. Some mycobacterial isolates from washer disinfectors (e.g., M. chelonae) were resistant to glutaraldehyde in suspension tests and caused endoscope-associated pseudo-outbreaks. Specific resistance mechanisms are occasionally known, e.g., efflux pumps, membrane changes or a plasmid. Cross-tolerance to other aldehydes can occur in E. coli, Halomonas spp. and B. cepacia. Hydrogen peroxide has the capacity to induce a function which reduces the killing effects of aldehydes in E. coli. Cross-resistances to rifampicin and sometimes also to isoniazid have been reported in glutaraldehyde-resistant M. chelonae. Low-level exposure does not significantly change the susceptibility of Salmonella spp. The effect of glutaraldehyde on biofilm formation is unknown. Biofilm fixation by glutaraldehyde is mostly strong (≥60%); biofilm removal is mostly poor (≤10%).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akamatsu T, Tabata K, Hironaga M, Uyeda M (1997) Evaluation of the efficacy of a 3.2% glutaraldehyde product for disinfection of fibreoptic endoscopes with an automatic machine. J Hosp Infect 35(1):47–57

    Article  CAS  PubMed  Google Scholar 

  2. Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401

    Article  CAS  PubMed  Google Scholar 

  3. Alfa MJ, Howie R (2009) Modeling microbial survival in buildup biofilm for complex medical devices. BMC Infect Dis 9:56. https://doi.org/10.1186/1471-2334-9-56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Angelillo IF, Bianco A, Nobile CG, Pavia M (1998) Evaluation of the efficacy of glutaraldehyde and peroxygen for disinfection of dental instruments. Lett Appl Microbiol 27(5):292–296

    Article  CAS  PubMed  Google Scholar 

  5. Aparecida Guimaraes M, Rocchetto Coelho L, Rodrigues Souza R, Ferreira-Carvalho BT, Marie Sa Figueiredo A (2012) Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol 56(3):203–207. https://doi.org/10.1111/j.1348-0421.2011.00423.x

    Article  PubMed  CAS  Google Scholar 

  6. Australian Government (2014) Glutaraldehyde: Sources of emissions. http://www.npi.gov.au/resource/glutaraldehyde-sources-emissions

  7. Azachi M, Henis Y, Shapira R, Oren A (1996) The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. MAC. Microbiology (Reading, England) 142(Pt 5):1249–1254. https://doi.org/10.1099/13500872-142-5-1249

  8. Azeredo J, Henriques M, Sillankorva S, Oliveira R (2003) Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Sci Technol 47(5):175–179

    Article  CAS  PubMed  Google Scholar 

  9. Bar W, Marquez de Bar G, Naumann A, Rusch-Gerdes S (2001) Contamination of bronchoscopes with Mycobacterium tuberculosis and successful sterilization by low-temperature hydrogen peroxide plasma sterilization. Am J Infect Control 29(5):306–311

    Article  CAS  PubMed  Google Scholar 

  10. Bardouniotis E, Huddleston W, Ceri H, Olson ME (2001) Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol Lett 203(2):263–267

    PubMed  CAS  Google Scholar 

  11. Barroso JM (2014) COMMISSION IMPLEMENTING DECISION of 24 April 2014 on the non-approval of certain biocidal active substances pursuant to Regulation (EU) No 528/2012 of the European Parliament and of the Council. Off J Eur Union 57(L 124):27–29

    Google Scholar 

  12. Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56(2):377–380

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Best M, Sattar SA, Springthorpe VS, Kennedy ME (1988) Comparative mycobactericidal efficacy of chemical disinfectants in suspension and carrier tests. Appl Environ Microbiol 54:2856–2858

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Best M, Sattar SA, Springthorpe VS, Kennedy ME (1990) Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28(10):2234–2239

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Best M, Springthorpe VS, Sattar SA (1994) Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control 22(3):152–162

    Article  CAS  PubMed  Google Scholar 

  16. Bordas JM, Marcos-Maeso MA, Perez MJ, Llach J, Gines A, Pique JM (2005) GI flexible endoscope disinfection: “in use” test comparative study. Hepatogastroenterology 52(63):800–807

    PubMed  Google Scholar 

  17. Bradley CR, Fraise AP (1996) Heat and chemical resistance of enterococci. J Hosp Infect 34:191–196

    Article  CAS  PubMed  Google Scholar 

  18. Buergers R, Rosentritt M, Schneider-Brachert W, Behr M, Handel G, Hahnel S (2008) Efficacy of denture disinfection methods in controlling Candida albicans colonization in vitro. Acta Odontol Scand 66(3):174–180. https://doi.org/10.1080/00016350802165614

    Article  PubMed  CAS  Google Scholar 

  19. Burgess W, Margolis A, Gibbs S, Duarte RS, Jackson M (2017) Disinfectant susceptibility profiling of glutaraldehyde-resistant Nontuberculous Mycobacteria. Infect Control Hosp Epidemiol 38(7):784–791. https://doi.org/10.1017/ice.2017.75

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campagnaro RL, Teichtahl H, Dwyer B (1994) A pseudoepidemic of Mycobacterium chelonae: contamination of a bronchoscope and autocleaner. Aust N Z J Med 24(6):693–695

    Article  CAS  PubMed  Google Scholar 

  21. Chapman JS, Diehl MA, Fearnside KB (1998) Preservative tolerance and resistance. Int J Cosmet Sci 20(1):31–39. https://doi.org/10.1046/j.1467-2494.1998.171733.x

    Article  PubMed  CAS  Google Scholar 

  22. Chiu HC, Lin TL, Wang JT (2007) Identification and characterization of an organic solvent tolerance gene in Helicobacter pylori. Helicobacter 12(1):74–81. https://doi.org/10.1111/j.1523-5378.2007.00473.x

    Article  PubMed  CAS  Google Scholar 

  23. Chiu HC, Lin TL, Yang JC, Wang JT (2009) Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BMC Microbiol 9:136. https://doi.org/10.1186/1471-2180-9-136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Collins FM, Montalbine V (1976) Mycobactericidal activity of glutaraldehyde solutions. J Clin Microbiol 4(5):408–412

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Couto N, Belas A, Tilley P, Couto I, Gama LT, Kadlec K, Schwarz S, Pomba C (2013) Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. Vet Microbiol 166(1–2):299–303. https://doi.org/10.1016/j.vetmic.2013.05.011

    Article  PubMed  CAS  Google Scholar 

  26. Cronmiller JR, Nelson DK, Jackson DK, Kim CH (1999) Efficacy of conventional endoscopic disinfection and sterilization methods against Helicobacter pylori contamination. Helicobacter 4(3):198–203

    Article  CAS  PubMed  Google Scholar 

  27. Cronmiller JR, Nelson DK, Salman G, Jackson DK, Dean RS, Hsu JJ, Kim CH (1999) Antimicrobial efficacy of endoscopic disinfection procedures: a controlled, multifactorial investigation. Gastrointest Endosc 50(2):152–158

    Article  CAS  PubMed  Google Scholar 

  28. da Costa Luciano C, Olson N, Tipple AF, Alfa M (2016) Evaluation of the ability of different detergents and disinfectants to remove and kill organisms in traditional biofilm. Am J Infect Control 44(11):e243–e249. https://doi.org/10.1016/j.ajic.2016.03.040

    Article  CAS  Google Scholar 

  29. Dauendorffer JN, Laurain C, Weber M, Dailloux M (2000) Evaluation of the bactericidal efficiency of a 2% alkaline glutaraldehyde solution on Mycobacterium xenopi. J Hosp Infect 46(1):73–76. https://doi.org/10.1053/jhin.2000.0793

    Article  PubMed  CAS  Google Scholar 

  30. Davis D, Bonekat HW, Andrews D, Shigeoka JW (1984) Disinfection of the flexible fibreoptic bronchoscope against Mycobacterium tuberculosis and M gordonae. Thorax 39(10):785–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Groote MA, Gibbs S, de Moura VC, Burgess W, Richardson K, Kasperbauer S, Madinger N, Jackson M (2014) Analysis of a panel of rapidly growing mycobacteria for resistance to aldehyde-based disinfectants. Am J Infect Control 42(8):932–934. https://doi.org/10.1016/j.ajic.2014.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deva AK, Vickery K, Zou J, West RH, Selby W, Benn RA, Harris JP, Cossart YE (1998) Detection of persistent vegetative bacteria and amplified viral nucleic acid from in-use testing of gastrointestinal endoscopes. J Hosp Infect 39(2):149–157

    Article  CAS  PubMed  Google Scholar 

  33. Duarte RS, Lourenco MC, Fonseca Lde S, Leao SC, Amorim Ede L, Rocha IL, Coelho FS, Viana-Niero C, Gomes KM, da Silva MG, Lorena NS, Pitombo MB, Ferreira RM, Garcia MH, de Oliveira GP, Lupi O, Vilaca BR, Serradas LR, Chebabo A, Marques EA, Teixeira LM, Dalcolmo M, Senna SG, Sampaio JL (2009) Epidemic of postsurgical infections caused by Mycobacterium massiliense. J Clin Microbiol 47(7):2149–2155. https://doi.org/10.1128/jcm.00027-09

    Article  PubMed  PubMed Central  Google Scholar 

  34. eCA Finland (2014) Assessment report. Glutaraldehyde Product-type 2, 3, 4, 6, 11, 12.

    Google Scholar 

  35. El-Azizi M, Farag N, Khardori N (2016) Efficacy of selected biocides in the decontamination of common nosocomial bacterial pathogens in biofilm and planktonic forms. Comp Immunol Microbiol Infect Dis 47:60–71. https://doi.org/10.1016/j.cimid.2016.06.002

    Article  PubMed  Google Scholar 

  36. Espigares E, Bueno A, Espigares M, Galvez R (2006) Isolation of Salmonella serotypes in wastewater and effluent: Effect of treatment and potential risk. Int J Hyg Environ Health 209(1):103–107. https://doi.org/10.1016/j.ijheh.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  37. Espigares E, Bueno A, Fernandez-Crehuet M, Espigares M (2003) Efficacy of some neutralizers in suspension tests determining the activity of disinfectants. J Hosp Infect 55(2):137–140

    Article  CAS  PubMed  Google Scholar 

  38. Espigares E, Moreno Roldan E, Espigares M, Abreu R, Castro B, Dib AL, Arias A (2017) Phenotypic Resistance to Disinfectants and Antibiotics in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Pigs. Zoonoses Public Health 64(4):272–280. https://doi.org/10.1111/zph.12308

    Article  PubMed  CAS  Google Scholar 

  39. European Chemicals Agency (ECHA) Glutaral. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.003.506. Accessed 16 Nov 2017

  40. Fisher CW, Fiorello A, Shaffer D, Jackson M, McDonnell GE (2012) Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Am J Infect Control 40(9):880–882. https://doi.org/10.1016/j.ajic.2011.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  41. Foliente RL, Kovacs BJ, Aprecio RM, Bains HJ, Kettering JD, Chen YK (2001) Efficacy of high-level disinfectants for reprocessing GI endoscopes in simulated-use testing. Gastrointest Endosc 53(4):456–462. https://doi.org/10.1067/mge.2001.113380

    Article  PubMed  CAS  Google Scholar 

  42. Fraser VJ, Jones M, Murray PR, Medoff G, Zhang Y, Wallace RJ Jr (1992) Contamination of flexible fiberoptic bronchoscopes with Mycobacterium chelonae linked to an automated bronchoscope disinfection machine. Am Rev Respir Dis 145(4 Pt 1):853–855. https://doi.org/10.1164/ajrccm/145.4_Pt_1.853

    Article  PubMed  CAS  Google Scholar 

  43. Fraud S, Hann AC, Maillard JY, Russell AD (2003) Effects of ortho-phthalaldehyde, glutaraldehyde and chlorhexidine diacetate on Mycobacterium chelonae and Mycobacterium abscessus strains with modified permeability. J Antimicrob Chemother 51(3):575–584

    Article  CAS  PubMed  Google Scholar 

  44. Fraud S, Maillard JY, Russell AD (2001) Comparison of the mycobactericidal activity of ortho- phthalaldehyde, glutaraldehyde and other dialdehydes by a quantitative suspension test. J Hosp Infect 48(3):214–221. https://doi.org/10.1053/jhin.2001.1009

    Article  PubMed  CAS  Google Scholar 

  45. Gomes IB, Malheiro J, Mergulhao F, Maillard JY, Simoes M (2016) Comparison of the efficacy of natural-based and synthetic biocides to disinfect silicone and stainless steel surfaces. Pathog Dis 74(4):ftw014. https://doi.org/10.1093/femspd/ftw014

  46. Gradel KO, Randall L, Sayers AR, Davies RH (2005) Possible associations between Salmonella persistence in poultry houses and resistance to commonly used disinfectants and a putative role of mar. Vet Microbiol 107 (1–2):127–138. https://doi.org/10.1016/j.vetmic.2005.01.013

  47. Grasteau A, Guiraud T, Daniel P, Calvez S, Chesneau V, Le Hénaff M (2015) Evaluation of Glutaraldehyde, Chloramine-T, Bronopol, Incimaxx Aquatic® and Hydrogen Peroxide as Biocides against Flavobacterium psychrophilum for Sanitization of Rainbow Trout Eyed Eggs. J Aquac Res Development 6(12):382

    Article  CAS  Google Scholar 

  48. Griffiths PA, Babb JR, Bradley CR, Fraise AP (1997) Glutaraldehyde-resistant Mycobacterium chelonae from endoscope washer disinfectors. J Appl Microbiol 82(4):519–526

    Article  CAS  PubMed  Google Scholar 

  49. Griffiths PA, Babb JR, Fraise AP (1999) Mycobactericidal activity of selected disinfectants using a quantitative suspension test. J Hosp Infect 41(2):111–121

    Article  CAS  PubMed  Google Scholar 

  50. Grobe KJ, Zahller J, Stewart PS (2002) Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. J Ind Microbiol Biotechnol 29(1):10–15. https://doi.org/10.1038/sj.jim.7000256

    Article  PubMed  CAS  Google Scholar 

  51. Guimarães T, Chimara E, do Prado GVB, Ferrazoli L, Carvalho NGF, Simeão FCdS, de Souza AR, Costa CAR, Viana Niero C, Brianesi UA, di Gioia TR, Gomes LMB, Spadão FdS, Silva MdG, de Moura EGH, Levin AS (2016) Pseudooutbreak of rapidly growing mycobacteria due to Mycobacterium abscessus subsp bolletii in a digestive and respiratory endoscopy unit caused by the same clone as that of a countrywide outbreak. Am J Infect Control 44(11):e221-e226. http://dx.doi.org/10.1016/j.ajic.2016.06.019

  52. Guo W, Shan K, Xu B, Li J (2015) Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health 109(4):184–192. https://doi.org/10.1179/2047773215y.0000000022

  53. Hanson PJ, Chadwick MV, Gaya H, Collins JV (1992) A study of glutaraldehyde disinfection of fibreoptic bronchoscopes experimentally contaminated with Mycobacterium tuberculosis. J Hosp Infect 22(2):137–142

    Article  CAS  PubMed  Google Scholar 

  54. Hashimoto T, Blumenthal HJ (1978) Survival and resistance of Trichophyton mentagrophytes arthrospores. Appl Environ Microbiol 35(2):274–277

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Henoun Loukili N, Becker H, Harno J, Bientz M, Meunier O (2004) Effect of peracetic acid and aldehyde disinfectants on biofilm. J Hosp Infect 58(2):151–154

    Article  CAS  PubMed  Google Scholar 

  56. Hernández A, Martró E, Matas L, Ausina V (2003) In-vitro evaluation of Perasafe compared with 2% alkaline glutaraldehyde against Mycobacterium spp. J Hosp Infect 54(1):52–56

    Article  PubMed  Google Scholar 

  57. Hernández A, Martró E, Puzo C, Matas L, Burgués C, Vázquez N, Castella J, Ausina V (2003) In-use evaluation of Perasafe compared with Cidex in fibreoptic bronchoscope disinfection. J Hosp Infect 54(1):46–51

    Google Scholar 

  58. Holton J, Nye P, McDonald V (1994) Efficacy of selected disinfectants against mycobacteria and cryptosporidia. J Hosp Infect 27(2):105–115

    Article  CAS  PubMed  Google Scholar 

  59. Holton J, Shetty N, McDonald V (1995) Efficacy of ‘Nu-Cidex’ (0.35% peracetic acid) against mycobacteria and cryptosporidia. J Hosp Infect 31(3):235–237

    Article  CAS  PubMed  Google Scholar 

  60. Howie R, Alfa MJ, Coombs K (2008) Survival of enveloped and non-enveloped viruses on surfaces compared with other micro-organisms and impact of suboptimal disinfectant exposure. J Hosp Infect 69(4):368–376. https://doi.org/10.1016/j.jhin.2008.04.024

    Article  PubMed  CAS  Google Scholar 

  61. Isenberg HD (1985) Clinical laboratory studies of disinfection with Sporicidin. J Clin Microbiol 22(5):735–739

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Isenberg HD, Giugliano ER, France K, Alperstein P (1988) Evaluation of three disinfectants after in-use stress. J Hosp Infect 11(3):278–285

    Article  CAS  PubMed  Google Scholar 

  63. Iwasawa A, Niwano Y, Kohno M, Ayaki M (2011) Bactericidal effects and cytotoxicity of new aromatic dialdehyde disinfectants (ortho-phthalaldehyde). Biocontrol Sci 16(4):165–170

    Article  CAS  PubMed  Google Scholar 

  64. Jackson J, Leggett JE, Wilson DA, Gilbert DN (1996) Mycobacterium gordonae in fiberoptic bronchoscopes. Am J Infect Control 24(1):19–23

    Article  CAS  PubMed  Google Scholar 

  65. Jomha MY, Yusef H, Holail H (2014) Antimicrobial and biocide resistance of bacteria in a Lebanese tertiary care hospital. J Glob Antimicrob Res 2(4):299–305. https://doi.org/10.1016/j.jgar.2014.09.001

    Article  Google Scholar 

  66. Juncker JC (2015) COMMISSION IMPLEMENTING REGULATION (EU) 2015/1759 of 28 September 2015 approving glutaraldehyde as an existing active substance for use in biocidal products for product- types 2, 3, 4, 6, 11 and 12. Off J Eur Union 58(L 257):19–26

    Google Scholar 

  67. Kadry AA, Serry FM, El-Ganiny AM, El-Baz AM (2017) Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br J Biomed Sci 74(2):78–84. https://doi.org/10.1080/09674845.2017.1278884

    Article  PubMed  Google Scholar 

  68. Kampf G, Ostermeyer C, Tschudin-Sutter S, Widmer AF (2013) Resistance or adaptation? How susceptible is a ‘glutaraldehyde-resistant’ Pseudomonas aeruginosa isolate in the absence of selection pressure? J Hosp Infect 84(4):316–318. https://doi.org/10.1016/j.jhin.2013.05.010

  69. Khalilzadegan S, Sade M, Godarzi H, Eslami G, Hallajzade M, Fallah F, Yadegarnia D (2016) Beta-Lactamase Encoded Genes blaTEM and blaCTX Among Acinetobacter baumannii Species Isolated From Medical Devices of Intensive Care Units in Tehran Hospitals. Jundishapur J Microbiol 9(5):e14990. https://doi.org/10.5812/jjm.14990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Konrat K, Schwebke I, Laue M, Dittmann C, Levin K, Andrich R, Arvand M, Schaudinn C (2016) The bead assay for biofilms: a quick, easy and robust method for testing disinfectants. PLoS ONE 11(6):e0157663. https://doi.org/10.1371/journal.pone.0157663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kressel AB, Kidd F (2001) Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol 22(7):414–418. https://doi.org/10.1086/501926

    Article  PubMed  CAS  Google Scholar 

  72. La Scola B, Rolain J-M, Maurin M, Raoult D (2003) Can Whipple’s disease be transmitted by gastroscopes? Infect Control Hosp Epidemiol 24(3):191–194

    Article  PubMed  Google Scholar 

  73. Laopaiboon L, Phukoetphim N, Laopaiboon P (2006) Effect of glutaraldehyde biocide on laboratory-scale rotating biological contactors and biocide efficacy. Electron J Biotechnol 9(4):10

    Article  CAS  Google Scholar 

  74. Leung HW (2001) Aerobic and anaerobic metabolism of glutaraldehyde in a river water-sediment system. Arch Environ Contam Toxicol 41(3):267–273. https://doi.org/10.1007/s002440010248

    Article  PubMed  CAS  Google Scholar 

  75. Leung HW (2001) Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicol Environ Saf 49(1):26–39. https://doi.org/10.1006/eesa.2000.2031

    Article  PubMed  CAS  Google Scholar 

  76. Liu Q, Liu M, Wu Q, Li C, Zhou T, Ni Y (2009) Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis 41(6–7):403–409. https://doi.org/10.1080/00365540902856545

    Article  PubMed  CAS  Google Scholar 

  77. Lorena NS, Pitombo MB, Cortes PB, Maya MC, Silva MG, Carvalho AC, Coelho FS, Miyazaki NH, Marques EA, Chebabo A, Freitas AD, Lupi O, Duarte RS (2010) Mycobacterium massiliense BRA100 strain recovered from postsurgical infections: resistance to high concentrations of glutaraldehyde and alternative solutions for high level disinfection. Acta cirurgica brasileira 25(5):455–459

    Article  PubMed  Google Scholar 

  78. Lynam PA, Babb JR, Fraise AP (1995) Comparison of the mycobactericidal activity of 2% alkaline glutaraldehyde and ‘Nu-Cidex’ (0.35% peracetic acid). J Hosp Infect 30(3):237–240

    Article  CAS  PubMed  Google Scholar 

  79. Manzoor SE, Lambert PA, Griffiths PA, Gill MJ, Fraise AP (1999) Reduced glutaraldehyde susceptibility in Mycobacterium chelonae associated with altered cell wall polysaccharides. J Antimicrob Chemother 43(6):759–765

    Article  CAS  PubMed  Google Scholar 

  80. Marin C, Hernandiz A, Lainez M (2009) Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci 88(2):424–431. https://doi.org/10.3382/ps.2008-00241

    Article  PubMed  CAS  Google Scholar 

  81. Middleton AM, Chadwick MV, Sanderson JL, Gaya H (2000) Comparison of a solution of super-oxidized water (Sterilox) with glutaraldehyde for the disinfection of bronchoscopes, contaminated. J Hosp Infect 45(4):278–282. https://doi.org/10.1053/jhin.2000.0772

    Article  PubMed  CAS  Google Scholar 

  82. Namba Y, Suzuki A, Takeshima N, Kato N (1985) Comparative study of bactericidal activities of six different disinfectants. Nagoya J Med Sci 47(3–4):101–112

    PubMed  CAS  Google Scholar 

  83. Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol Pharm Bull 30(3):585–587

    Article  CAS  PubMed  Google Scholar 

  84. Neves MS, da Silva MG, Ventura GM, Cortes PB, Duarte RS, de Souza HS (2016) Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes. Gastrointest Endosc 83(5):944–953. https://doi.org/10.1016/j.gie.2015.09.016

    Article  PubMed  Google Scholar 

  85. Nicholson G, Hudson RA, Chadwick MV, Gaya H (1995) The efficacy of the disinfection of bronchoscopes contaminated in vitro with Mycobacterium tuberculosis and Mycobacterium avium-intracellulare in sputum: a comparison of Sactimed-I-Sinald and glutaraldehyde. J Hosp Infect 29(4):257–264

    Article  CAS  PubMed  Google Scholar 

  86. Nomura K, Ogawa M, Miyamoto H, Muratani T, Taniguchi H (2004) Antibiotic susceptibility of glutaraldehyde-tolerant Mycobacterium chelonae from bronchoscope washing machines. Am J Infect Control 32(4):185–188. https://doi.org/10.1016/j.ajic.2003.07.007

    Article  PubMed  Google Scholar 

  87. Nunoshiba T, Hashimoto M, Nishioka H (1991) Cross-adaptive response in Escherichia coli caused by pretreatment with H2O2 against formaldehyde and other aldehyde compounds. Mutat Res 255(3):265–271

    Article  CAS  PubMed  Google Scholar 

  88. Orsi GB, Tomao P, Visca P (1995) In vitro activity of commercially manufactured disinfectants against Pseudomonas aeruginosa. Eur J Epidemiol 11(4):453–457

    Article  CAS  PubMed  Google Scholar 

  89. Penna TC, Mazzola PG, Silva Martins AM (2001) The efficacy of chemical agents in cleaning and disinfection programs. BMC Infect Dis 1:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pineau L, Desbuquois C, Marchetti B, Luu Duc D (2008) Comparison of the fixative properties of five disinfectant solutions. J Hosp Infect 68(2):171–177. https://doi.org/10.1016/j.jhin.2007.10.021

    Article  PubMed  CAS  Google Scholar 

  91. Rikimaru T, Kondo M, Kajimura K, Hashimoto K, Oyamada K, Sagawa K, Tanoue S, Oizumi K (2002) Bactericidal activities of commonly used antiseptics against multidrug-resistant Mycobacterium tuberculosis. Dermatology (Basel, Switzerland) 204 Suppl 1:15–20. https://doi.org/10.1159/000057719

  92. Rikimaru T, Kondo M, Kondo S, Oizumi K (2000) Efficacy of common antiseptics against mycobacteria. Int J Tuberc Lung Dis: Off J Int Union Against Tuberc Lung Dis 4(6):570–576

    CAS  Google Scholar 

  93. Rutala WA, Cole EC, Wannamaker NS, Weber DJ (1991) Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med 91(3b):267s–271s

    Article  CAS  PubMed  Google Scholar 

  94. Sagripanti J-L, Eklund CA, Trost PA, Jinneman KC, Abeyta C, Kaysner CA, Hill WE (1997) Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am J Infect Control 25(4):335–339

    Article  CAS  PubMed  Google Scholar 

  95. Sasatsu M, Shibata Y, Noguchi N, Kono M (1992) High-level resistance to ethidium bromide and antiseptics in Staphylococcus aureus. FEMS Microbiol Lett 72(2):109–113

    Article  CAS  PubMed  Google Scholar 

  96. Sehmi SK, Allan E, MacRobert AJ, Parkin I (2016) The bactericidal activity of glutaraldehyde-impregnated polyurethane. MicrobiologyOpen 5(5):891–897. https://doi.org/10.1002/mbo3.378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Serry FM, Kadry AA, Abdelrahman AA (2003) Potential biological indicators for glutaraldehyde and formaldehyde sterilization processes. J Ind Microbiol Biotechnol 30(3):135–140. https://doi.org/10.1007/s10295-002-0007-z

    Article  PubMed  CAS  Google Scholar 

  98. Shakeri S, Kermanshahi RK, Moghaddam MM, Emtiazi G (2007) Assessment of biofilm cell removal and killing and biocide efficacy using the microtiter plate test. Biofouling 23(1–2):79–86. https://doi.org/10.1080/08927010701190011

    Article  PubMed  CAS  Google Scholar 

  99. Shetty N, Srinivasan S, Holton J, Ridgway GL (1999) Evaluation of microbicidal activity of a new disinfectant: Sterilox 2500 against Clostridium difficile spores, Helicobacter pylori, vancomycin resistant Enterococcus species, Candida albicans and several Mycobacterium species. J Hosp Infect 41:101–105

    Article  CAS  PubMed  Google Scholar 

  100. Simoes LC, Lemos M, Araujo P, Pereira AM, Simoes M (2011) The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens. Biofouling 27(3):337–346. https://doi.org/10.1080/08927014.2011.575935

    Article  PubMed  CAS  Google Scholar 

  101. Simoes M, Pereira MO, Machado I, Simoes LC, Vieira MJ (2006) Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens. J Ind Microbiol Biotechnol 33(9):741–749. https://doi.org/10.1007/s10295-006-0120-5

    Article  PubMed  CAS  Google Scholar 

  102. Simoes M, Pereira MO, Vieira MJ (2003) Monitoring the effects of biocide treatment of Pseudomonas fluorescens biofilms formed under different flow regimes. Water Sci Technol 47(5):217–223

    Article  CAS  PubMed  Google Scholar 

  103. Simoes M, Pereira MO, Vieira MJ (2005) Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 39(20):5142–5152. https://doi.org/10.1016/j.watres.2005.09.028

    Article  PubMed  CAS  Google Scholar 

  104. Stanley PM (1999) Efficacy of peroxygen compounds against glutaraldehyde-resistant mycobacteria. Am J Infect Control 27(4):339–343

    Article  CAS  PubMed  Google Scholar 

  105. Stewart PS, Grab L, Diemer JA (1998) Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol 85(3):495–500

    Article  CAS  PubMed  Google Scholar 

  106. Stickler DJ (1974) Chlorhexidine resistance in Proteus mirabilis. J Clin Pathol 27(4):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stickler DJ, Thomas B, Chawla JC (1981) Antiseptic and antibiotic resistance in gram-negative bacteria causing urinary tract infection in spinal cord injured patients. Paraplegia 19:50–58

    PubMed  CAS  Google Scholar 

  108. Takeo Y, Oie S, Kamiya A, Konishi H, Nakazawa T (1994) Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa. Microbios 79(318):19–26

    PubMed  CAS  Google Scholar 

  109. Takigawa K, Fujita J, Negayama K, Terada S, Yamaji S, Kawanishi K, Takahara J (1995) Eradication of contaminating Mycobacterium chelonae from bronchofibrescopes and an automated bronchoscope disinfection machine. Respir Med 89(6):423–427

    Article  CAS  PubMed  Google Scholar 

  110. Tortorano AM, Viviani MA, Biraghi E, Rigoni AL, Prigitano A, Grillot R (2005) In vitro testing of fungicidal activity of biocides against Aspergillus fumigatus. J Med Microbiol 54(Pt 10):955–957. https://doi.org/10.1099/jmm.0.45997-0

    Article  PubMed  CAS  Google Scholar 

  111. Tschudin-Sutter S, Frei R, Kampf G, Tamm M, Pflimlin E, Battegay M, Widmer AF (2011) Emergence of glutaraldehyde-resistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 32(12):1173–1178

    Article  PubMed  Google Scholar 

  112. United States Environmental Protection Agency (2007) Reregistration eligibility decision for glutaraldehyde https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-043901_28-Sep-07.pdf

  113. Urayama S, Kozarek RA, Sumida S, Raltz S, Merriam L, Pethigal P (1996) Mycobacteria and glutaraldehyde: is high-level disinfection of endoscopes possible? Gastrointest Endosc 43(5):451–456

    Article  CAS  PubMed  Google Scholar 

  114. van Klingeren B, Pullen W (1993) Glutaraldehyde resistant mycobacteria from endoscope washers. J Hosp Infect 25(2):147–149

    Article  PubMed  Google Scholar 

  115. Vesley D, Melson J, Stanley P (1999) Microbial bioburden in endoscope reprocessing and an in-use evaluation of the high-level disinfection capabilities of Cidex PA. Gastroenterol Nurs: Off J Soc Gastroenterol Nurs Associates 22(2):63–68

    Article  CAS  Google Scholar 

  116. Vieira CD, Farias Lde M, Diniz CG, Alvarez-Leite ME, Camargo ER, Carvalho MA (2005) New methods in the evaluation of chemical disinfectants used in health care services. Am J Infect Control 33(3):162–169. https://doi.org/10.1016/j.ajic.2004.10.007

    Article  PubMed  Google Scholar 

  117. Vikram A, Bomberger JM, Bibby KJ (2015) Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 59(6):3433–3440. https://doi.org/10.1128/aac.05152-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Vikram A, Lipus D, Bibby K (2014) Produced water exposure alters bacterial response to biocides. Environ Sci Technol 48(21):13001–13009. https://doi.org/10.1021/es5036915

    Article  PubMed  CAS  Google Scholar 

  119. Vizcaino-Alcaide MJ, Herruzo-Cabrera R, Fernandez-Acenero MJ (2003) Comparison of the disinfectant efficacy of Perasafe and 2% glutaraldehyde in in vitro tests. J Hosp Infect 53:124–128

    Article  CAS  PubMed  Google Scholar 

  120. Walsh SE, Maillard JY, Russell AD (1999) Ortho-phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection. J Appl Microbiol 86(6):1039–1046

    Article  CAS  PubMed  Google Scholar 

  121. Wang GQ, Zhang CW, Liu HC, Chen ZB (2005) Comparison of susceptibilities of M. tuberculosis H37Ra and M. chelonei subsp. abscessus to disinfectants. Biomed Environ Sci: BES 18(2):124–127

    Google Scholar 

  122. Wang HC, Liaw YS, Yang PC, Kuo SH, Luh KT (1995) A pseudoepidemic of Mycobacterium chelonae infection caused by contamination of a fibreoptic bronchoscope suction channel. Eur Res J 8(8):1259–1262

    Article  CAS  Google Scholar 

  123. Wang Z, Bie P, Cheng J, Wu Q, Lu L (2015) In vitro evaluation of six chemical agents on smooth Brucella melitensis strain. Ann Clin Microbiol Antimicrob 14:16. https://doi.org/10.1186/s12941-015-0077-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Wheeler PW, Lancaster D, Kaiser AB (1989) Bronchopulmonary cross-colonization and infection related to mycobacterial contamination of suction valves of bronchoscopes. J Infect Dis 159(5):954–958

    Article  CAS  PubMed  Google Scholar 

  125. WHO (2017) WHO model list of essential medicines. WHO. http://www.who.int/medicines/publications/essentialmedicines/20th_EML2017_FINAL_amendedAug2017.pdf

  126. Witney AA, Gould KA, Pope CF, Bolt F, Stoker NG, Cubbon MD, Bradley CR, Fraise A, Breathnach AS, Butcher PD, Planche TD, Hinds J (2014) Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect 20(10):O609–O618. https://doi.org/10.1111/1469-0691.12528

    Article  PubMed  CAS  Google Scholar 

  127. Zhang X, Kong J, Tang P, Wang S, Hyder Q, Sun G, Zhang R, Yang Y (2011) Current status of cleaning and disinfection for gastrointestinal endoscopy in China: a survey of 122 endoscopy units. Dig Liver Dis: Off J Ital Soc Gastroenterol Ital Assoc Study Liver 43(4):305–308. https://doi.org/10.1016/j.dld.2010.12.010

    Article  Google Scholar 

  128. Zühlsdorf B, Kampf G (2006) Evaluation of the effectiveness of an enzymatic cleaner and a glutaraldehyde-based disinfectant for chemothermal processing of flexible endoscopes in washer-disinfectors in accordance with prEN ISO 15883. Endoscopy 38(6):586–591

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Kampf .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kampf, G. (2018). Glutaraldehyde. In: Antiseptic Stewardship. Springer, Cham. https://doi.org/10.1007/978-3-319-98785-9_7

Download citation

Publish with us

Policies and ethics