Skip to main content

Methodological Foundations of Clinical Research

  • Chapter
  • First Online:
Book cover Clinical Research Informatics

Part of the book series: Health Informatics ((HI))

  • 1590 Accesses

Abstract

This chapter focuses on clinical experiments, discussing the phases of the pharmaceutical development process. We review the conceptual framework and classification of biomedical studies and look at their distinctive characteristics. Biomedical studies are classified into two main categories, observational and experimental, which are then further classified into subcategories of prospective and retrospective and community and clinical, respectively. We review the basic concepts of experimental design, including defining study samples and calculating sample size, where the sample is the group of subjects on which the study is performed. Choosing a sample involves both qualitative and quantitative considerations, and the sample must be representative of the population under study. We then discuss treatments, including those that are the object of the experiment (study treatments) and those that are not (concomitant treatments). Minimizing bias through the use of randomization, blinding, and a priori definition of the statistical analysis is also discussed. Finally, we briefly look at innovative approaches, for example, how adaptive clinical trials can shorten the time and reduce the cost of classical research programs or how targeted designs can allow a more efficient use of patients in rare conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacchieri A, Della Cioppa G. Fundamentals of clinical research. Bridging medicine, statistics and operations. Milan: Springer; 2007.

    Book  Google Scholar 

  2. Hill RG, Rang HP, editors. Drug discovery and development. 2nd ed. Churchill Livingstone: Elsevier; 2012.

    Google Scholar 

  3. DiMasi J, Hansen R, Gabrowski H. The price of innovation: new estimates of drug development cost. J Health Econ. 2003;22:151–8.

    Article  Google Scholar 

  4. Lilienfeld AM, Lilienfeld DE. Foundations of epidemiology. 2nd ed. New York: Oxford University Press; 1980.

    Google Scholar 

  5. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/reg_2014_536/reg_2014_536_en.pdf. L158/12. Clinical Trials Regulation (EU) No 536/2014, p. 12.

  6. Pretince R. Surrogate end-points in clinical trials: definition and operational criteria. Stat Med. 1989;8:431–40.

    Article  Google Scholar 

  7. Bland JM, Altman DG. Regression toward the mean. BMJ. 1994;308:1499.

    Article  CAS  Google Scholar 

  8. Bland JM, Altman DG. Some examples of regression toward the mean. BMJ. 1994;309:780.

    Article  CAS  Google Scholar 

  9. http://www.rethinkingclinicaltrials.org/. Living textbook of pragmatic clinical trials.

  10. Armitage P. Sequential medical trials. Blackwell Scientific Publications. Oxford: London; 1975.

    Google Scholar 

  11. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64(2):191–9.

    Article  Google Scholar 

  12. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35(3):549–56.

    Article  Google Scholar 

  13. Demets DL, Lan KG. Interim analysis: the alpha spending approach. Stat Med. 1994;13(13–14):1341–52.

    Article  CAS  Google Scholar 

  14. Chow SC, Chang M. Adaptive design methods in clinical trials – a review. Orphanet J Rare Dis. 2008;3:11. https://doi.org/10.1186/1750-1172-3-11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meurer WJ, Lewis RJ, Berry DA. Adaptive clinical trials: a partial remedy for the therapeutic misconception? JAMA. 2012;307(22):2377–8.

    Article  CAS  Google Scholar 

  16. Bauer P, Kohne K. Evaluation of experiments with adaptive interim analyses. Biometrics. 1994;50:1029–41.

    Article  CAS  Google Scholar 

  17. Jennison C, Tumbull BW. Mid-course sample size modification in clinical trials based on the observed treatment effect. Stat Med. 2003;22:971–93.

    Article  Google Scholar 

  18. Proscham M, Liu Q, Hunsberger S. Practical mid-course sample size modification in clinical trials. Control Clin Trials. 2003;24:4–15.

    Article  Google Scholar 

  19. Shun Z. Sample size re-estimation in clinical trials. Drug Inf J. 2001;35:1409–22.

    Article  Google Scholar 

  20. Gould AL. Sample size re-estimation: recent developments and practical considerations. Stat Med. 2001;20:2625–43.

    Article  CAS  Google Scholar 

  21. Lin J, Lin LA, Sankoh S. A general overview of adaptive randomization design for clinical trials. J Biom Biostat. 2016;7:2. https://doi.org/10.4172/2155-6180.1000294.

    Article  Google Scholar 

  22. Hu F, Rosenberger WF. The theory of response-adaptive randomization in clinical trials. Hoboken: Wiley. 2006

    Book  Google Scholar 

  23. Thall PF, Wathen JK. Practical Bayesian adaptive randomization in clinical trials. Eur J Cancer. 2007;43:859–66.

    Article  Google Scholar 

  24. Iasonos A, O’Quigley J. Adaptive dose-finding studies: a review of model-guided phase I clinical trials. J Clin Oncol. 2014;32(23):2505–11.

    Article  Google Scholar 

  25. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics. 1990;46(1):33–48.

    Article  Google Scholar 

  26. White paper of the PhARMA Working Group on adaptive dose-ranging studies. https://www.phrma.org/search?incmode=keywordsearch&keyword=%2026.%20White%20paper%20of%20the%20PhARMA%20Working%20Group%20on%20adaptive%.

  27. Gaydos B, Krams M, Perevozskaya I, et al. Adaptive dose-response studies. Drug Inf J. 2006;40:451–61.

    Article  Google Scholar 

  28. Bauer P, Rohmel J. An adaptive method for establishing a dose-response relationship. Stat Med. 1995;14:1595–607.

    Article  CAS  Google Scholar 

  29. Maca J, Bhattacharya S, Dragalin V, et al. Adaptive seamless phase II/III designs. Background, operational aspects and examples. Drug Inf J. 2006;40:463–73.

    Article  Google Scholar 

  30. Liu Q, Pledger GW. Phase 2 and 3 combination designs to accelerate drug development. J Am Stat Assoc. 2005;100:493–502.

    Article  CAS  Google Scholar 

  31. Era 21Liu Q, Proscham MA, Pledger GW. A unified theory of two-stage adaptive designs. J Am Stat Soc. 2002;97:1034–41.

    Article  Google Scholar 

  32. Era 22Bauer P, Kieser M. Combining different phases in the development of medical treatments within a single trial. Stat Med. 1999;18:1833–48.

    Article  CAS  Google Scholar 

  33. Don GA. A varying-stage adaptive phase II/III clinical trial design. Stat Med. 2014;33:1272–87.

    Article  Google Scholar 

  34. Branson M, Whitehead J. Estimating a treatment effect in survival studies in which patients switch treatment. Stat Med. 2002;21(17):2449–63.

    Article  Google Scholar 

  35. Hommel G. Adaptive modifications of hypotheses after an interim analysis. Biom J. 2001;43:581–9.

    Article  Google Scholar 

  36. Muller HH, Schafer H. A general statistical principle for changing a design any time during the course of a trial. Stat Med. 2004;23:2497–508.

    Article  Google Scholar 

  37. Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for therapeutic development in precision oncology. Nature. 2015;526:361–70.

    Article  CAS  Google Scholar 

  38. Chen C, Li X, Yuan S, Antonijevic Z, Kalamegham R, Beckman RA. Statistical design and considerations of a phase III basket trial for simultaneous investigation of multiple tumor types in one study. Stat Biopharm Res. 2016;8(3):248–57.

    Article  Google Scholar 

  39. Cunanan KM, Gonen M, Shen R, Hyman DM, Riely GI, Begg CB, Iasonos A. Basket trials in oncology: a trade-off between complexity and efficiency. J Clin Oncol. 2017;35(3):271–3.

    Article  Google Scholar 

  40. Cunanan KM, Iasonos A, Shen R, Hyman D, Begg CB, Gonen M. An efficient basket trial design. Stat Med. 2017;36(10):1568–79.

    PubMed  PubMed Central  Google Scholar 

  41. Berry SM, Connor JT, Lewis RJ. The platform trial: an efficient strategy for evaluating multiple treatments. JAMA. 2015;313(16):1619–20.

    Article  Google Scholar 

  42. Saville BR, Berry SM. Efficiencies of platform clinical trials: a vision of the future. Clin Trials. 2016;13(3):358–66.

    Article  Google Scholar 

  43. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–91.

    Article  Google Scholar 

  44. Hemming K, et al. The stepped wedge cluster randomized trial: rationale, design, analysis, and reporting. BMJ. 2015;h391:351.

    Google Scholar 

  45. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–6.

    Article  CAS  Google Scholar 

  46. Cummings IL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failure. Alzheimers Res Ther. 2014;6(4):37.

    Article  Google Scholar 

  47. Minnerup J, Wersching H, Schilling M, Schabitz WR. Analysis of early phase and subsequent phase III stroke studies of neuroprotectants outcomes and predictor for success. Exp Transl Stroke Med. 2014;6(1):2.

    Article  Google Scholar 

  48. Sacks LV, et al. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000–2012. JAMA. 2014;311:378–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Bacchieri MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bacchieri, A., Della Cioppa, G. (2019). Methodological Foundations of Clinical Research. In: Richesson, R., Andrews, J. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-98779-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98779-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98778-1

  • Online ISBN: 978-3-319-98779-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics