Skip to main content

Nonhypothesis-Driven Research: Data Mining and Knowledge Discovery

  • Chapter
  • First Online:
Clinical Research Informatics

Part of the book series: Health Informatics ((HI))

Abstract

Clinical information, stored over time, is a potentially rich source of data for clinical research. Knowledge discovery in databases (KDD), commonly known as data mining, is a process for pattern discovery and predictive modeling in large databases. KDD makes extensive use of data mining methods, automated processes, and algorithms that enable pattern recognition. Characteristically, data mining involves the use of machine learning methods developed in the domain of artificial intelligence. These methods have been applied to healthcare and biomedical data for a variety of purposes with good success and potential or realized clinical translation. Herein, the Fayyad model of knowledge discovery in databases is introduced. The steps of the process are described with select examples from clinical research informatics. These steps range from initial data selection to interpretation and evaluation. Commonly used data mining methods are surveyed: artificial neural networks, decision tree induction, support vector machines (kernel methods), association rule induction, and k-nearest neighbor. Methods for evaluating the models that result from the KDD process are closely linked to methods used in diagnostic medicine. These include the use of measures derived from a confusion matrix and receiver operating characteristic curve analysis. Data partitioning and model validation are critical aspects of evaluation. International efforts to develop and refine clinical data repositories are critically linked to the potential of these methods for developing new knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kush R. Where is caBIG Going? [Internet]. CDISC Website. 2012. Available from: http://www.cdisc.org/where-cabig-going?

References

  1. Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. Am J Ophthalmol. 2000;130(5):688.

    Article  CAS  Google Scholar 

  2. Aronsky D, Fiszman M, Chapman WW, Haug PJ. Combining decision support methodologies to diagnose pneumonia. In:Proceedings of the AMIA symposium; 2001. p. 12–6.

    Google Scholar 

  3. Lagor C, Aronsky D, Fiszman M, Haug PJ. Automatic identification of patients eligible for a pneumonia guideline: comparing the diagnostic accuracy of two decision support models. Stud Health Technol Inform. 2001;84(Pt 1):493–7.

    CAS  PubMed  Google Scholar 

  4. Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996;17(3):37–54.

    Google Scholar 

  5. Aronsky D, Haug PJ, Lagor C, Dean NC. Accuracy of administrative data for identifying patients with pneumonia. Am J Med Qual. 2005;20(6):319–28. https://doi.org/10.1177/1062860605280358.

    Article  PubMed  Google Scholar 

  6. Poynton MR, Frey L, Freg H. Representation of smoking-related concepts in an electronic health record. In:Medinfo 2007: Proceedings of the 12th world congress on health (medical) informatics; building sustainable health systems; 2007. p. 2255.

    Google Scholar 

  7. Minsky M. The society of mind. New York: Simon & Schuster; 1986.

    Google Scholar 

  8. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5(4):115–33. https://doi.org/10.1007/BF02478259.

    Article  Google Scholar 

  9. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.

    Article  CAS  Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90. https://doi.org/10.1145/3065386.

    Article  Google Scholar 

  11. Quinlan JR. C4. 5: programs for machine learning. Oxford: Elsevier; 2014.

    Google Scholar 

  12. Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge, UK: Cambridge University Press; 2000.

    Book  Google Scholar 

  13. Vapnik VN. The nature of statistical learning theory. New York: Springer; 1995. p. 188.

    Book  Google Scholar 

  14. Vapnik VN. Statistical learning theory. New York: Wiley; 1998. p. 736.

    Google Scholar 

  15. Jonsson P, Wohlin C. Benchmarking k-nearest neighbour imputation with homogeneous likert data. Empir Softw Eng. 2006;11(3):463–89. https://doi.org/10.1007/s10664-006-9001-9.

    Article  Google Scholar 

  16. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology. 1982;143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747.

    Article  CAS  PubMed  Google Scholar 

  17. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform. 2005;38(5):404–15. https://doi.org/10.1016/j.jbi.2005.02.008.

    Article  PubMed  Google Scholar 

  18. Cordero F, Botta M, Calogero RA. Microarray data analysis and mining approaches. Brief Funct Genomics. 2007;6(4):265–81. https://doi.org/10.1093/bfgp/elm034.

    Article  CAS  Google Scholar 

  19. Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford: Oxford University Press; 2003. ISBN 9780198509844.

    Google Scholar 

  20. Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci. 2001;16(3):199–231. https://doi.org/10.1214/ss/1009213726.

    Article  Google Scholar 

  21. Genomeweb. Persistent systems helps first european deploy cabig’s catissue repository. 2009.

    Google Scholar 

  22. Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H, Doherty D, Forsberg K, Gao Y, Kashyap V, Kinoshita J, Luciano J, Marshall MS, Ogbuji C, Rees J, Stephens S, Wong GT, Wu E, Zaccagnini D, Hongsermeier T, Neumann E, Herman I, Cheung K-H. Advancing translational research with the semantic web. BMC Bioinforma. 2007;8(3):S2. https://doi.org/10.1186/1471-2105-8-s3-s2.

    Article  Google Scholar 

  23. Program E. Environmental influences on child health outcomes (echo) program. 1/30/2018), ECHO supports multiple longitudinal studies using existing study populations to investigate environmental exposures on child health and development.

    Google Scholar 

  24. Burnett N. Harmonization of sensor measurement to support health research. In: Proceedings of the national conference of undergraduate research 2017. 2017.

    Google Scholar 

  25. Kelly KE, Whitaker J, Petty A, Widmer C, Dybwad A, Sleeth D, Martin R, Butterfield A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ Pollut. 2017;221:491–500. https://doi.org/10.1016/j.envpol.2016.12.039.

    Article  CAS  PubMed  Google Scholar 

  26. Matheny ME, Ohno-Machado L, Resnic FS. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform. 2005;38(5):367–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mollie R. Cummins PhD, RN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cummins, M.R. (2019). Nonhypothesis-Driven Research: Data Mining and Knowledge Discovery. In: Richesson, R., Andrews, J. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-98779-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98779-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98778-1

  • Online ISBN: 978-3-319-98779-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics