Skip to main content

How Much as Compared to What: Relative Magnitude as a Key Idea in Mathematics Cognition

  • Chapter
  • First Online:
Visualizing Mathematics

Part of the book series: Research in Mathematics Education ((RME))

Abstract

Most topics beyond basic arithmetic require relative magnitude reasoning. This chapter describes the link between relative magnitude reasoning and spatial scaling, a specific type of spatial thinking. We discuss use of the number line, proportional reasoning, and fractions. Consideration of the relational reasoning involved in mathematics can advance our understanding of its relation to spatial skills, and has implications for mathematics instruction, such as using spatial reasoning interventions in developing effective methods for supporting relative magnitude understanding. We review evidence that interventions can be successful in promoting better relative magnitude understanding and associated spatial-relational reasoning, and suggest that education considers ways of including relative magnitude learning, along with more traditional whole-number operations, in early educational efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125–135.

    Article  Google Scholar 

  • Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247–253.

    Article  Google Scholar 

  • Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3= 2/6= 3/9= 4/12? Journal of Experimental Child Psychology, 111, 516–533.

    Article  Google Scholar 

  • Boyer, T. W., & Levine, S. C. (2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615.

    Article  Google Scholar 

  • Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: where young children go wrong. Developmental Psychology, 44(5), 1478.

    Article  Google Scholar 

  • Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380.

    Article  Google Scholar 

  • Casey, B., Erkut, S., Ceder, I., & Young, J. M. (2008). Use of a storytelling context to improve girls’ and boys’ geometry skills in kindergarten. Journal of Applied Developmental Psychology, 29(1), 29–48.

    Article  Google Scholar 

  • Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26, 269–309.

    Article  Google Scholar 

  • Common Core State Standards Initiative. (2010). Common core state standards for mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers. Retrieved from http://www.corestandards.org/the-standards/mathematics.

  • Davies, C., & Uttal, D. H. (2007). Map use and the development of spatial cognition. In J. Plumert & J. Spencer (Eds.), The emerging Spatial Mind (pp. 219–247). New York, NY: Oxford University Press.

    Chapter  Google Scholar 

  • DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 1556–1557.

    Article  Google Scholar 

  • DeWolf, M., & Vosniadou, S. (2011, January). The whole number bias in fraction magnitude comparisons with adults. In Proceedings of the annual meeting of the cognitive science society (Vol. 33, No. 33).

    Google Scholar 

  • Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5-to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 1–17.

    Article  Google Scholar 

  • Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. https://doi.org/10.1016/j.jecp.2014.01.013

    Article  Google Scholar 

  • Fazio, L. K., Kennedy, C. A., & Siegler, R. S. (2016). Improving children’s knowledge of fraction magnitudes. PLoS One, 11(10), e0165243. https://doi.org/10.1371/journal.pone.0165243

    Article  Google Scholar 

  • Fisher, K. R., Hirsh-Pasek, K., Newcombe, N., & Golinkoff, R. M. (2013). Taking shape: Supporting preschoolers’ acquisition of geometric knowledge through guided play. Child Development, 84, 1872–1878.

    Article  Google Scholar 

  • Frick, A., & Newcombe, N. S. (2012). Getting the big picture: Development of spatial scaling abilities. Cognitive Development, 27, 270–282.

    Article  Google Scholar 

  • Fuchs, L. S., Malone, A. S., Schumacher, R. F., Namkung, J., Hamlett, C. L., Jordan, N. C., … Changas, P. (2016). Supported self-explaining during fraction intervention. Journal of Educational Psychology, 108(4), 493.

    Article  Google Scholar 

  • Garcia Garcia, G., & Cox, R. (2010). “Graph-as-picture” in Misconceptions in young students. In A. K. Goel, M. Jamnik, & N. H. Narayanan (Eds.), Diagrammatic representation and inference. Diagrams 2010. Lecture notes in computer science (pp. 310–312). Berlin: Springer.

    Google Scholar 

  • Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59, 47–59.

    Article  Google Scholar 

  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability. Austin, TX: PRO-ED.

    Google Scholar 

  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229.

    Article  Google Scholar 

  • Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27(2), 115–147.

    Article  Google Scholar 

  • Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393–398.

    Article  Google Scholar 

  • Jirout, J., & Newcombe, N. S. (2014). Mazes and maps: Can young children find their way? Mind, Brain, and Education, 8(2), 89–96.

    Article  Google Scholar 

  • Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills evidence from a large, representative US sample. Psychological Science, 26(3), 302–310.

    Article  Google Scholar 

  • Ketterlin-Geller, L. R., Gifford, D. B., & Perry, L. (2015). Measuring middle school students’ algebra readiness: Examining validity evidence for three experimental measures. Assessment for Effective Intervention, 41(1), 28–40.

    Article  Google Scholar 

  • Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. Developmental Psychology, 50(3), 853–864.

    Article  Google Scholar 

  • Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: A predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48, 530–542.

    Article  Google Scholar 

  • Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201–221. https://doi.org/10.1016/j.dr.2015.07.008

    Article  Google Scholar 

  • Lourenco, S. F., & Longo, M. R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. Brannon (Eds.), Space, time, and number in the brain: Searching for the foundations of mathematical thought (pp. 225–244). Waltham, MA: Academic Press.

    Chapter  Google Scholar 

  • Mix, K. S. (2010). Spatial tools for mathematical thought. Space and language, 41-66. In K. S. Mix, L. B. Smith, & M. Gasser (Eds.), The spatial foundations of cognition and language: Thinking through space (no. 4). Oxford: Oxford University Press.

    Google Scholar 

  • Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35, 164–174.

    Article  Google Scholar 

  • Möhring, W., Newcombe, N. S., & Frick, A. (2014). Zooming in on spatial scaling: Preschool children and adults use mental transformations to scale spaces. Developmental Psychology, 50(5), 1614–1619.

    Article  Google Scholar 

  • Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016a). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213–220.

    Article  Google Scholar 

  • Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016b). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67–84.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (2010). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • National Mathematics Advisory Panel (NMAP). (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education.

    Google Scholar 

  • National Research Council. (2009). Mathematics Learning in Early Childhood. Washington, DC: The National Academic Press.

    Google Scholar 

  • Negan, J., & Sarnecka, B. W. (2014). Is there really a link between exact-number knowledge and approximate number system acuity in young children? British Journal of Developmental Psychology, 33(1), 92–105.

    Article  Google Scholar 

  • Newcombe, N. S., Frick, A., & Möhring, W. (2018). How big is many? Development of spatial and numerical magnitude understanding. In A. Henik & W. Fias (Eds.), Heterogeneity of function in numerical cognition. Academic.

    Google Scholar 

  • Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and spatial reasoning. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. WIREs in Cognitive Science, 6(6), 491–505.

    Article  Google Scholar 

  • Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Dordrecht: Springer.

    Google Scholar 

  • Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves mathematics performance in preschoolers. Journal of Experimental Child Psychology, 152, 278–293.

    Article  Google Scholar 

  • Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133, 188–200.

    Article  Google Scholar 

  • Peeters, D., Verschaffel, L., & Luwel, K. (2017). Benchmark-based strategies in whole number line estimation. British Journal of Psychology, 108, 668–686. https://doi.org/10.1111/bjop.12233

    Article  Google Scholar 

  • Piaget, J. (1952). The child’s conception of number. New York: Norton.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1956). The child’s conception of space. New York: Humanities Press.

    Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2014). How informal learning activities can promote children's numerical knowledge. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of mathematical cognition. New York: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.012

    Chapter  Google Scholar 

  • Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104, 661–672.

    Article  Google Scholar 

  • Resnick, I., Davatzes, A., Newcombe, N. S., & Shipley, T. F. (2017). Using relational reasoning to learn about scientific phenomena at unfamiliar scales. Educational Psychology Review, 29(1), 11–25.

    Article  Google Scholar 

  • Sandberg, E., Huttenlocher, J., & Newcombe, N. (1996). The development of hierarchical representation of two-dimensional space. Child Development, 67, 721–739.

    Article  Google Scholar 

  • Scalise, N. R., Daubert, E. N., & Ramani, G. B. (2017, April). Short- and Long-term effects of playing card games on low-income children’s early mathematics skills. Paper presented at the biennial meeting of the Society for Research in Child Development, Austin, TX.

    Google Scholar 

  • Schneider, M., Heine, A., Thaler, V., Torbeyns, J., de Smedt, B., Verschaffel, L., … Stern, E. (2008). A validation of eye movements as a measure of elementary school children’s developing number sense. Cognitive Development, 23(3), 409–422.

    Article  Google Scholar 

  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Reviews in Psychology, 68, 187–213. https://doi.org/10.1146/annurev-psych-010416-044101

    Article  Google Scholar 

  • Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346–351.

    Article  Google Scholar 

  • Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.

    Article  Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560.

    Article  Google Scholar 

  • Singer-Freeman, K. E., & Goswamani, U. (2001). Does half a pizza equal half a box of chocolates? Proportional matching in an analogy task. Cognitive Development, 16, 811–829.

    Article  Google Scholar 

  • Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142(1), 193–208.

    Article  Google Scholar 

  • Spinillo, A. G., & Bryant, P. (1991). Children's proportional judgments: The importance of “half”. Child Development, 62(3), 427–440.

    Article  Google Scholar 

  • Szűcs, D., & Myers, T. (2017). A critical analysis of design, facts, bias, and inference in the approximate number system training literature: A systematic review. Trends in Neuroscience and Education, 6, 187–203.

    Article  Google Scholar 

  • Uttal, D. H. (2000). Seeing the big picture: Map use and the development of spatial cognition. Developmental Science, 3, 247–286.

    Article  Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402.

    Article  Google Scholar 

  • Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: A developmental perspective. In Visualization: Theory and practice in science education (pp. 53–72). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children's understanding of fractions. Child Development, 85(4), 1461–1476.

    Article  Google Scholar 

  • Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., … & Ogbuehi, P. (2012). Improving Mathematical Problem Solving in Grades 4 through 8. IES Practice Guide. NCEE 2012-4055. What Works Clearinghouse.

    Google Scholar 

  • Wynn, K. (1990). Children’s Understanding of Counting. Cognition, 36(2), 155–193.

    Article  Google Scholar 

  • Ye, A., Resnick, I., Hansen, N., Rodriguez, J., Rinne, L., & Jordan, N. C. (2016). Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge. Journal of Experimental Child Psychology, 152, 242–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Jirout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jirout, J., Newcombe, N.S. (2018). How Much as Compared to What: Relative Magnitude as a Key Idea in Mathematics Cognition. In: Mix, K., Battista, M. (eds) Visualizing Mathematics. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-98767-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98767-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98766-8

  • Online ISBN: 978-3-319-98767-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics