Skip to main content

Facets and Promises of Gait Biometric Recognition

  • Chapter
  • First Online:

Abstract

The emerging field of behavior biometrics has prompted a re-examination of many previously overlooked human characteristics. One such characteristic that has traditionally undergone analysis in the medical realm is the gait biometric. Gait biometrics refer to the unique aspects of human locomotion that can be captured and used for recognition purposes. These biometrics offer a number of potential advantages over other traditional biometrics in their abilities to be detected at a distance and with little-to-no obtrusion to the subject of the analysis. The gait biometric also offers another potential advantage over many traditional biometrics because it is inherently difficult to spoof the complicated set of actions that compose the human gait. This chapter discusses the various approaches that have been used to perform recognition via the gait biometric and examines the performance and implications that might be expected when applying the gait biometric to a real-world scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.D. Addlesee, A. Jones, F. Livesey, F. Samaria, The ORL active floor [sensor system]. IEEE Pers. Comm. 4(5), 35–41 (1997)

    Article  Google Scholar 

  2. S.J.M. Bamberg, A.Y. Benbasat, D.M. Scarborough, D.E. Krebs, J.A. Paradiso, Gait analysis using a shoe integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)

    Article  Google Scholar 

  3. T. Barry, Atlanta Business Chronicle. [Online]. (2002, April). http://www.bizjournals.com/atlanta/stories/2002/04/22/focus4.html?s=print

  4. (2017, July) Biometric Recognition Group – ATVS. [Online]. http://atvs.ii.uam.es/sfootbd.html

  5. I. Bouchrika, M.S. Nixon, Exploratory factor analysis of gait recognition. In 8th IEEE International Conference on Automatic Face and Gesture Recognition, Amsterdam, France, 2008, pp. 1–6.

    Google Scholar 

  6. I. Bouchrika, M.S. Nixon, Model-based feature extraction for gait analysis and recognition. In MIRAGE'07 Proceedings of the 3rd international conference on Computer vision/computer graphics collaboration techniques, Rocquencourt, 2007, pp. 150–160.

    Google Scholar 

  7. N.V. Boulgouris, D. Hatzinakos, K.N. Plataniotis, Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process. Mag. 22(6), 78–90 (2005)

    Article  Google Scholar 

  8. N.V. Boulgouris, K.N. Plataniotis, H. Dimitrios, Gait recognition using linear time normalization. Pattern Recogn. 39(5), 969–979 (2006)

    Article  Google Scholar 

  9. P.C. Cattin, Biometric authentication system using human gait. Swiss Federal Institute of Technology, Zurich, PhD Thesis (2002)

    Google Scholar 

  10. D. Cunado, M.S. Nixon, J.N. Carter, Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90(1), 1–41 (April 2003)

    Article  Google Scholar 

  11. D. Cunado, M.S. Nixon, J.N. Carter, Using gait as a biometric, via phase-weighted magnitude spectra. In AVBPA '97 Proceedings of the First International Conference on Audio - and Video-Based Biometric Person Authentication, London, 1997, pp. 95–102

    Google Scholar 

  12. D. Tan, K. Huang, S. Yu, T. Tan, Efficient night gait recognition based on template matching. In The 18th International Conference on Pattern Recognition, Hong Kong, 2006

    Google Scholar 

  13. J. Daugman, Biometric decision landscapes. University of Cambridge, Cambridge, Technical Report 1476-2986, 2000

    Google Scholar 

  14. M.O. Derawi, P. Bours, H. Kjetil, Improved cycle detection for accelerometer based gait authentication. In Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt, 2010, pp. 312–317

    Google Scholar 

  15. M.O. Derawi, D. Gafurov, P. Bours, Towards continuous authentication based on gait using wearable motion recording sensors, in Continuous Authentication Using Biometrics: Data, Models, and Metrics, ed. by I. Traoré, A.A.E. Ahmed (IGI Global, 2012, ch. 8), Hershey, PA, USA, pp. 170–192

    Google Scholar 

  16. M.N. Fitzgerald, Human Identification via Gait Recognition Using Accelerometer Gyro Force. [Online]. (2009). http://www.cs.yale.edu/homes/mfn3/public/mfn_gait_id.pdf

  17. D. Gafurov, K. Helkala, S. Torkjel, Biometric gait authentication using accelerometer sensor. J. Comput. 1(7), 51–58 (2006)

    Article  Google Scholar 

  18. D. Gafurov, E. Snekkenes, Gait Recognition Using Wearable Motion Recording Sensors. EURASIP J. Adv. Signal Process. 2009(1), 1–16 (2009)

    Article  Google Scholar 

  19. G. Goudelis, A. Tefas, I. Pitas, Intelligent multimedia analysis for emerging biometrics, in Intelligent Multimedia Analysis for Security Applications, ed. by H. T. Sencar et al. (Springer, Berlin/Heidelberg, 2010, ch. 5), pp. 97–125

    Google Scholar 

  20. H. Hachiya, M. Sugiyama, U. Naonori, Importance-weighted least squares probablistic classifier for covariate shift adaption with application to human activity recognition. Neurocomputing 80, 93–101 (2012)

    Article  Google Scholar 

  21. M. Hofmann, S. Sural, G. Rigoll, Gait recognition in the presence of occlusion: a new dataset and baseline algorithms. In 19th International Conferences on Computer Graphics, Visualization and Computer Vision, Plzen, 2011

    Google Scholar 

  22. E. Hossain, Investigating adaptive multi-modal approaches for person identity verification based on face and gait fusion. University of Canberra, PhD Dissertation, 2014

    Google Scholar 

  23. (2015, September) HRL Labratories, LLC. [Online]. https://www.hrl.com/news/2015/0930/

  24. B. Huang, M Chen, P. Huang, Y. Xu, Gait modeling for human identification. In IEEE International Conference on Robotics and Automation, Roma, 2007, pp. 4833–4838

    Google Scholar 

  25. B. Huang, M. Chen, W. Ye, Y. Xu, Intelligent shoes for human identification. In IEEE International Conference on Robotics and Biomimetrics, Kunming, 2006, pp. 601–606

    Google Scholar 

  26. A. Itai, H. Yasukawa, Person identification using footstep based on wavelets. In International Symposium on Intelligent Signal Processing and Communication Systems, Totoori, 2006, pp. 383–386

    Google Scholar 

  27. H. Iwama, M. Okumura, Y. Makihara, Y. Yagi, The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 7(5), 1511–1521 (2012)

    Article  Google Scholar 

  28. Y. Jaeseok, User identification using gait patterns on UbiFloorII. Sensors 11, 2611–2639 (2011)

    Google Scholar 

  29. A.H. Johnston, G.M. Weiss, Smartwatch-based biometric gait recognition. In IEEE 7th International Conference on Biometrics Theory, Applications and Systems, Arlington, 2015

    Google Scholar 

  30. (2017, July) Kistler force plate formulae. [Online]. http://isbweb.org/software/movanal/vaughan/kistler.pdf

  31. A. Lim, H.G. Okuno, Using speech data to recognize emotion in human gait. IEEE/RSJ HBU Workshop 7559, 52–64 (2012)

    Google Scholar 

  32. Z. Liu, S. Sarkar, Improved gait recognition by gait dynamics normalization. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 863–876 (2006)

    Article  Google Scholar 

  33. D. López-Fernández, F.J. Madrid-Cuevas, Á. Carmona-Poyato, J.M. Marín-Jiménez, R. Muñoz-Salinas, The AVA multi-view dataset for gait recognition, in Activity Monitoring by Multiple Distributed Sensing, ed. by P.L. Mazzeo, P. Spagnolo, T.B. Moeslund (Springer International Publishing, Stockohmn, 2014, ch. 3), pp. 26–39

    Google Scholar 

  34. J. Lu, E. Zhang, Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recogn. Lett. 28(16), 2401–2411 (2007)

    Article  Google Scholar 

  35. J.E. Mason, I. Traore, I. Woungang, Machine Learning Techniques for Gait Biometric Recognition, Springer International Publishing Switzerland (Springer, 2016)

    Google Scholar 

  36. M. Mihălcică, Gait analysis for criminal identification based on motion capture. In The 4th International Conference “Computational Mechanics and Virtual Engineering”, Brasov, 2011, pp. 19–20

    Google Scholar 

  37. A. Mostayed, S. Kim, M.M.G. Mazumder, S.J. Park, Foot step based person identification using histogram similarity and wavelet decomposition. In International Conference on Information Security and Assurance, Busan, 2008, pp. 307–311

    Google Scholar 

  38. S.P. Moustakidis, J.B. Theocharis, G. Giakas, Subject recognition based on ground reaction force measurements of gait signals. IEEE Trans. Syst. Man Cybern. B Cybern. 38(6), 1476–1485 (2008)

    Article  Google Scholar 

  39. T.T. Ngo, Y. Makihara, H. Nagahara, Y. Mukaigawa, Y. Yagi, The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 47(1), 222–231 (2014)

    Article  Google Scholar 

  40. C. Nickel, C. Busch, S. Rangarajan, Using hidden Markov models for accelerometer-based biometric gait recognition. In IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, 2011

    Google Scholar 

  41. M.S. Nixon, J.N. Carter, Automatic recognition by gait. Proc. IEEE 94(11), 2013–2024 (2006)

    Article  Google Scholar 

  42. M.S. Nixon, B. Imed, B. Arbab-Zavar, J.N. Carter, On use of biometrics in forensics: gait and ear. In European Signal Processing Conference, Aalborg, 2010, pp. 1655–1659

    Google Scholar 

  43. R.J. Orr, G.D. Abowd, The smart floor: a mechanism for natural user identification and tracking. In CHI '00 Conference on Human Factors in Computer Systems, The Hague, 2000, pp. 275–276

    Google Scholar 

  44. R. Panchumarthy, R. Subramanian, S. Sudeep, Biometric evaluation in the cloud: a case study with human ID gait challenge. In IEEE/ACM 5th International Conference on Utility and Cloud Computing, Chicago, 2012, pp. 219–222

    Google Scholar 

  45. J.P. Phillips, S. Sarkar, I. Robledo, P. Grother, K. Bowyer, Baseline results for the challenge problem of human ID using gait analysis. In Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, 2002, pp. 137–142

    Google Scholar 

  46. Plantiga. [Online]. http://www.plantiga.com

  47. J. Putz-Leszczynska, M. Granacki, Gait biometrics with Microsoft Kinect sensor. In 2014 International Carnahan Conference on Security Technology (ICCST), Rome, 2014, pp. 1–5

    Google Scholar 

  48. M. Riedmiller, H. Braun, Rprop – a fast adaptive learning algorithm. In International Symposium on Computer and Information Science VII, Antalya, 1992

    Google Scholar 

  49. R.V. Rodríguez, N.W.D. Evans, R.P. Lewis, B. Fauve, J.S.D. Mason, An experimental study on the feasibility of footsteps as a biometric. In 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, 2007, pp. 748–752

    Google Scholar 

  50. R.V. Rodríguez, J.S.D. Mason, N.W.D. Evans, Footstep Recognition for a Smart Home Environment. Int. J. Smart Home 2(2), 95–110 (2008)

    Google Scholar 

  51. A. Salarian et al., Gait Assessment in Parkinson's Disease: Toward an. IEEE Trans. Biomed. Eng. 51(8), 1434–1443 (2004)

    Article  Google Scholar 

  52. E.S. Sazonov, T. Bumpus, S. Zeigler, S. Marocco, Classification of plantar pressure and heel acceleration patterns using neural networks," in IEEE International Joint Conference on Neural Networks (Vol. 5), Montreal, 2005, pp. 3007–3010

    Google Scholar 

  53. L. Sloman, M. Berridge, S. Homatidis, T. Duck, Gait patterns of depressed patients and normal subjects. Am. J. Psychiatry 139(1), 94–97 (1982)

    Article  Google Scholar 

  54. S. Spranger, D. Zazula, Gait identification using cumulants of accelerometer data. In 2nd WSEAS International Conference on Sensors and Signals and Visualization, Imaging and Simulation and Material Science, Stevens Point, 2009, pp. 94–99

    Google Scholar 

  55. J. Suutala, K. Fujinami, J. Röning, Gaussian process person identifier based on simple floor sensors. In Smart Sensing and Context Third European Conference, EuroSSC, Zurich, 2008, pp. 58–68

    Google Scholar 

  56. J. Suutala, J. Röning, Methods for person identification on pressure-sensitive floor: Experiments with multiple classifiers and reject option. Inform. Fusion J. (Special Issue on Applications of Ensemble Methods) 9(1), 21–40 (2008)

    Google Scholar 

  57. UnifyID. [Online]. https://unify.id

  58. R. Vera-Rodriguez, J. Fierrez, J.S.D. Mason, A novel approach of gait recognition through fusion with footstep information. In 2013 International Conference on Biometrics (ICB), Madrid, 2013

    Google Scholar 

  59. R. Vera-Rodriguez, J.S.D. Mason, J. Fierrez, Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 823–834 (2013)

    Article  Google Scholar 

  60. R. Vera-Rodriguez, J.S.D. Mason, J. Fierrez, J. Ortega-Garcia, Analysis of spatial domain information for footstep recognition. IET Comput. Vis. 5(6), 380–388 (2011)

    Article  Google Scholar 

  61. ViTRAK Systems Inc. [Online]. http://stepscan.com

  62. W. Liang, T. Tan, H. Ning, W. Hu, Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  63. C.-Y. Yam, M.S. Nixon, Model-based gait recognition, in Encyclopedia of Biometrics, ed. by S.Z. Li, A. Jain (Springer US, 2009), pp. 633–639

    Google Scholar 

  64. Y. Zhang et al., Accelerometer-based gait recognition by sparse representation of signature points with clusters. IEEE Trans. Cybern. 45(9), 1864–1875 (2015)

    Article  Google Scholar 

  65. S. Zheng, K. Huang, T. Tan, Evaluation framework on translation-invariant representation for cumulative foot pressure image. In 18th IEEE International Conference on Image Processing, Brussels, 2011

    Google Scholar 

  66. Zikto. [Online]. http://zikto.com/1/w/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Eric Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mason, J.E., Traore, I., Woungang, I. (2019). Facets and Promises of Gait Biometric Recognition. In: Obaidat, M., Traore, I., Woungang, I. (eds) Biometric-Based Physical and Cybersecurity Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-98734-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98734-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98733-0

  • Online ISBN: 978-3-319-98734-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics