Skip to main content

Nano-biosensors and Nano-aptasensors for Stimulant Detection

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 21))

Abstract

Stimulants increase mental alertness, attention span and physical activity by motivating the central nervous system. Their application in attention-deficit hyperactivity disorder and narcolepsy treatment is attended. Currently, using biosensors for detection of stimulants represent a typical platform in which an aptamer is bio-recognition element. Nanotechnology has exciting ingredients for the improvement of biosensors that have exquisite sensitivity, specificity and versatility. The use of nanomaterials has enabled faster detection and nanobiosensors reproducibility with reduced instrumentation size.

The present paper reviews principles of the most stimulant electrochemical biosensor and nano-bio-sensors. The relevant systems are divided by the type of detection method and type of nanoparticles used for detection. Few examples of biosensors are reported using variety of nanomaterials such as quantum dots, gold nanoparticles, and carbon nanotubes for detection of caffeine, cocaine, methamphetamine, amphetamin and nicotine. Colorimetric, fluorescence, electrochemical and luminescence methods are described for detection of stimulants. Some of the most typical assays are also mentioned in the text.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angrist B, Sudilovsky A (1978) Central nervous system stimulants: historical aspects and clinical effects. In: Stimulants. Springer, Boston, pp 99–165

    Chapter  Google Scholar 

  • Asturias-Arribas L et al (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors. Talanta 105:131–134

    Article  CAS  Google Scholar 

  • Barone J, Roberts H (1984) Human consumption of caffeine. In: Caffeine. Springer, Berlin Heidelberg New York, pp 59–73

    Chapter  Google Scholar 

  • Basheer C et al (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853–2858

    Article  CAS  Google Scholar 

  • Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613

    Article  CAS  Google Scholar 

  • Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295–2303

    Article  CAS  Google Scholar 

  • Benowitz NL et al (1988) Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther 44:23–28

    Article  CAS  Google Scholar 

  • Bin Ahmad M et al (2012) Preparation, characterization and thermal degradation of polyimide (4-APS/BTDA)/SiO2 composite films. Int J Mol Sci 13:4860–4872

    Article  CAS  Google Scholar 

  • Butler D et al (2006) Development of a disposable amperometric immunosensor for the detection of ecstasy and its analogues using screen-printed electrodes. Anal Chim Acta 556:333–339

    Article  CAS  Google Scholar 

  • Cai Z et al (2010) Electrochemiluminescence detection of methamphetamine based on a Ru (bpy) 32+-doped silica nanoparticles/Nafion composite film modified electrode. Luminescence 25:367–372

    Article  CAS  Google Scholar 

  • Cai Q et al (2011) Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal Bioanal Chem 400:289–294

    Article  CAS  Google Scholar 

  • Cheng W-C et al (2007) A rapid and convenient LC/MS method for routine identification of methamphetamine/dimethylamphetamine and their metabolites in urine. Forensic Sci Int 166:1–7

    Article  CAS  Google Scholar 

  • Costill D et al (1977) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10:155–158

    Google Scholar 

  • Dai H et al (2009) An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens Bioelectron 24:1230–1234

    Article  CAS  Google Scholar 

  • Du Y et al (2010) Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal Chem 82:1556–1563

    Article  CAS  Google Scholar 

  • Ebrahimiasl S, Rajabpour A (2015) Synthesis and characterization of novel bactericidal Cu/HPMC BNCs using chemical reduction method for food packaging. J Food Sci Technol 52:5982–5988

    Article  CAS  Google Scholar 

  • Ebrahimiasl S, Zakaria A (2016) Electrochemical Synthesis, Characterization and Gas Sensing Properties of Hybrid Ppy/CS Coated ZnO Nanospheres. Int J Electrochem Sci 11:9902–9916

    Article  CAS  Google Scholar 

  • Ebrahimiasl S et al (2012) Preparation and photovoltaic property of a new hybrid nanocrystalline SnO 2/Polypyrrole p–n heterojunction. Opt Quant Electron 43:129–136

    Article  CAS  Google Scholar 

  • Ebrahimiasl S et al (2015) Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. Int J Nanomed 10:217

    Google Scholar 

  • Emrani AS et al (2016) A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron 79:288–293

    Article  CAS  Google Scholar 

  • Fang L et al (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628:80–86

    Article  CAS  Google Scholar 

  • Ferapontova EE et al (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130:4256–4258

    Article  CAS  Google Scholar 

  • Garrido J et al (2016) Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics 22:2511–2518

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  • Golub E et al (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81:9291–9298

    Article  CAS  Google Scholar 

  • Hansen JA et al (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229

    Article  CAS  Google Scholar 

  • Holzinger M et al (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    Article  Google Scholar 

  • Hu P et al (2010) Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. Sensors 10:5133–5159

    Article  CAS  Google Scholar 

  • Inoue H et al (2008) Simple and simultaneous detection of methamphetamine and dimethyl sulfone in crystalline methamphetamine seizures by fast gas chromatography. For Toxicol 26:19–22

    CAS  Google Scholar 

  • Jiang B et al (2012) Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosens Bioelectron 32:305–308

    Article  CAS  Google Scholar 

  • Kaistha K, Jaffe JH (1972) TLC techniques for identification of narcotics, barbiturates, and CNS stimulants in a drug abuse urine screening program. J Pharm Sci 61:679–689

    Article  CAS  Google Scholar 

  • Kalasinsky KS et al (2001) Regional distribution of methamphetamine in autopsied brain of chronic human methamphetamine users. Forensic Sci Int 116:163–169

    Article  CAS  Google Scholar 

  • Katiyar N et al (2013) Gold nanoparticles based colorimetric aptasensor for theophylline. Anal Methods 5:653–659

    Article  CAS  Google Scholar 

  • Khatamian M et al (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La 3+, Nd 3+ or Sm 3+) doped ZnO nanoparticles. J Mol Catal A Chem 365:120–127

    Article  CAS  Google Scholar 

  • Kohzadi R et al (2016) Designing a label free aptasensor for detection of methamphetamine. Biom J 2:28–33

    Google Scholar 

  • Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134:10777–10779

    Article  CAS  Google Scholar 

  • Lee H et al (2010) Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 25:1669–1674

    Article  CAS  Google Scholar 

  • Li Y et al (2007) Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem Commun 9:2571–2575

    Article  CAS  Google Scholar 

  • Li X et al (2008) Electrochemical aptasensor for the determination of cocaine incorporating gold nanoparticles modification. Electroanalysis 20:1475–1482

    Article  CAS  Google Scholar 

  • Li Y et al (2011) Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Anal Bioanal Chem 401:213–219

    Article  CAS  Google Scholar 

  • Lim Y et al (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 118:96–100

    Article  Google Scholar 

  • Liu W et al (2012) Highly sensitive and selective colorimetric detection of cartap residue in agricultural products. Talanta 101:382–387

    Article  CAS  Google Scholar 

  • Luppa PB et al (2001) Immunosensors—principles and applications to clinical chemistry. Clin Chim Acta 314:1–26

    Article  CAS  Google Scholar 

  • Ma L et al (2013) Electrogenerated chemiluminescence biosensor with gold nanoparticles/Ru (bpy) 32+ multilayer films on gold electrodes for the determination of ephedrine hydrochloride. Asian J Chem 25:2527

    Article  CAS  Google Scholar 

  • Maehashi K et al (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787

    Article  CAS  Google Scholar 

  • Mallat E et al (2001) Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection. Anal Chim Acta 427:165–171

    Article  CAS  Google Scholar 

  • Mao K et al (2016) G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. RSC Adv 6:62754–62759

    Article  CAS  Google Scholar 

  • Martin W et al (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258

    Article  CAS  Google Scholar 

  • Mei H et al (2010) Label-free electrochemical cocaine aptasensor based on a target-inducing aptamer switching conformation. Anal Sci 26:1265–1270

    Article  Google Scholar 

  • Müller M et al (2016) A cytochrome P450 3A4 biosensor based on generation 4.0 PAMAM dendrimers for the detection of caffeine. Biosensors 6:44

    Article  Google Scholar 

  • Nakashima K et al (2003) Determination of methamphetamine and amphetamine in abusers’ plasma and hair samples with HPLC-FL. Biomed Chromatogr 17:471–476

    Article  CAS  Google Scholar 

  • O’Sullivan CK (2002) Aptasensors-the future of biosensing? Anal Bioanal Chem 372:44–48

    Article  Google Scholar 

  • Pan Q et al (2008) An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. Anal Biochem 375:179–186

    Article  CAS  Google Scholar 

  • Pelossof G et al (2011) Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Chem Eur J 17:8904–8912

    Article  CAS  Google Scholar 

  • Pohanka M, Skládal P (2008) Electrochemical biosensors–principles and applications. J Appl Biomed 6:57–64

    Article  CAS  Google Scholar 

  • Post RM (1975) Cocaine psychoses: a continuum model. Am J Psychiatry 132(3):225–231

    Google Scholar 

  • Rafiee B et al (2015) Impedimetric and stripping voltammetric determination of methamphetamine at gold nanoparticles-multiwalled carbon nanotubes modified screen printed electrode. Sensors Actuators B Chem 218:271–279

    Article  CAS  Google Scholar 

  • Roushani M, Shahdost-fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators B Chem 207:764–771

    Article  CAS  Google Scholar 

  • Roushani M, Shahdost-fard F (2016) An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe. Microchim Acta 183:185–193

    Article  CAS  Google Scholar 

  • Sanles-Sobrido M et al (2009) Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: the case of cocaine. Nanoscale 1:153–158

    Article  CAS  Google Scholar 

  • Sassolas A et al (2009) Electrochemical aptasensors. Electroanalysis 21:1237–1250

    Article  CAS  Google Scholar 

  • Schivelbusch W (1992) Tastes of paradise: a social history of spices, stimulants, and intoxicants. Pantheon Books, New York

    Google Scholar 

  • Shahdost-fard F et al (2014) Highly selective and sensitive adenosine aptasensor based on platinum nanoparticles as catalytical label for amplified detection of biorecognition events through H 2 O 2 reduction. Biosens Bioelectron 53:355–362

    Article  CAS  Google Scholar 

  • Shekelle PG et al (2003) Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 289:1537–1545

    CAS  Google Scholar 

  • Shi H et al (2011) Colorimetric immunosensing via protein functionalized gold nanoparticle probe combined with atom transfer radical polymerization. Biosens Bioelectron 26:3788–3793

    Article  CAS  Google Scholar 

  • Shi Y et al (2013) Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. Analyst 138:7152–7156

    Article  CAS  Google Scholar 

  • Shi Q et al (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511

    Article  CAS  Google Scholar 

  • Soldano C et al (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  CAS  Google Scholar 

  • Staiano M et al (2005) Glucose biosensors as models for the development of advanced protein-based biosensors. Mol BioSyst 1:354–362

    Article  CAS  Google Scholar 

  • Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679

    Article  CAS  Google Scholar 

  • Stojanovic MN et al (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548

    Article  CAS  Google Scholar 

  • Stojanovic MN et al (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931

    Article  CAS  Google Scholar 

  • Suave RVC, “Traducido por cchr mexico como un servicio a la sociedad.”

    Google Scholar 

  • Sun J et al (2008) Analysis of amphetamines in urine with liquid–liquid extraction by capillary electrophoresis with simultaneous electrochemical and electrochemiluminescence detection. Electrophoresis 29:3999–4007

    Article  CAS  Google Scholar 

  • Suzuki O et al (1984) Detection of methamphetamine and amphetamine in a single human hair by gas chromatography/chemical ionization mass spectrometry. J For Sci 29:611–617

    CAS  Google Scholar 

  • Švorc Ľ et al (2014) Electrochemical behavior of methamphetamine and its voltammetric determination in biological samples using self-assembled boron-doped diamond electrode. J Electroanal Chem 717:34–40

    Article  Google Scholar 

  • Taghdisi SM et al (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250

    Article  CAS  Google Scholar 

  • Wang Y et al (2010) Colorimetric biosensing of mercury (II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998

    Article  CAS  Google Scholar 

  • Wang G-L et al (2012) “Oxidative etching-aggregation” of silver nanoparticles by melamine and electron acceptors: an innovative route toward ultrasensitive and versatile functional colorimetric sensors. Anal Chim Acta 747:92–98

    Article  CAS  Google Scholar 

  • Wei F et al (2005) Poly (methacrylic acid-ethylene glycol dimethacrylate) monolith in-tube solid-phase microextraction applied to simultaneous analysis of some amphetamine derivatives in urine by capillary zone electrophoresis. Electrophoresis 26:3141–3150

    Article  CAS  Google Scholar 

  • Wenger B et al (2012) Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: detection of cocaine. Biosens Bioelectron 34:94–99

    Article  CAS  Google Scholar 

  • Wilens TE, Biederman J (1992) The stimulants. Psychiatr Clin N Am 15:191–222

    Article  CAS  Google Scholar 

  • Wilens TE, Spencer TJ (2000) The stimulants revisited. Child Adolesc Psychiatry Clin N Am 9:573–603

    Article  CAS  Google Scholar 

  • Wilens TE et al (2008) Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry 47:21–31

    Article  Google Scholar 

  • Wilson GS, Hu Y (2000) Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693–2704

    Article  CAS  Google Scholar 

  • Wolfbeis OS (2000) Fiber-optic chemical sensors and biosensors. Anal Chem 72:81–90

    Article  CAS  Google Scholar 

  • Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283

    Article  CAS  Google Scholar 

  • Yagiuda K et al (1996) Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens Bioelectron 11:703–707

    Article  CAS  Google Scholar 

  • Yamaguchi M et al (2001) A rapid enzyme immunoassay for cocaine and benzoylecgonine using glucose oxidase. J Health Sci 47:419–423

    Article  CAS  Google Scholar 

  • Yan X et al (2010) DNA aptamer folding on magnetic beads for sequential detection of adenosine and cocaine by substrate-resolved chemiluminescence technology. Analyst 135:2400–2407

    Article  CAS  Google Scholar 

  • Yarbakht M, Nikkhah M (2016) Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection. J Exp Nanosci 11:593–601

    Article  CAS  Google Scholar 

  • Yeh C-H et al (2012) A developed competitive immunoassay based on impedance measurements for methamphetamine detection. Microfluid Nanofluid 13:319–329

    Article  CAS  Google Scholar 

  • Yi C et al (2005) Electrochemiluminescent determination of methamphetamine based on tris (2, 2′-bipyridine) ruthenium (II) ion-association in organically modified silicate films. Anal Chim Acta 541:73–81

    Article  Google Scholar 

  • Yu J et al (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11:1286–1291

    Article  CAS  Google Scholar 

  • Zarei A et al. (2014) Development of bactericidal Ag/chitosan nanobiocomposites for active food packaging In: International multidisciplinary microscopy congress, pp 255–260

    Chapter  Google Scholar 

  • Zhang C-y, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055

    Article  CAS  Google Scholar 

  • Zhang S et al (2016) A novel, label-free fluorescent aptasensor for cocaine detection based on a G-quadruplex and ruthenium polypyridyl complex molecular light switch. Anal Methods 8:3740–3746

    Article  CAS  Google Scholar 

  • Zhou J et al (2012) Aptamer sensor for cocaine using minor groove binder based energy transfer. Anal Chim Acta 719:76–81

    Article  CAS  Google Scholar 

  • Zhu D et al (2012) Designing bifunctionalized gold nanoparticle for colorimetric detection of Pb 2+ under physiological condition. Biosens Bioelectron 31:505–509

    Article  CAS  Google Scholar 

  • Zou R et al (2012) Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv 2:4636–4638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeideh Ebrahimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebrahimi, S., Nahli, R.E. (2019). Nano-biosensors and Nano-aptasensors for Stimulant Detection. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology. Environmental Chemistry for a Sustainable World, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-98708-8_6

Download citation

Publish with us

Policies and ethics