Skip to main content

Molecularly Imprinted Polymeric Nanomaterials for Environmental Analysis

  • Chapter
  • First Online:
  • 795 Accesses

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 21))

Abstract

Most of the biological processes are based on molecular recognition. Over the past few decades, biomimetic materials and artificial receptors with molecular recognition properties have been fabricated. The approach of molecularly imprinted polymers is one of the exciting areas of generation of artificial receptors. These synthetic receptors are more stable, robust and easy to be handled. Furthermore, nanostructured materials show outstanding properties such as low cost, high surface-to-volume ratio and easy preparation and handling. Subsequently, the approach of molecular imprinting has been extended from bulk-to-nano materials. In this chapter, molecularly imprinted polymers have been discussed with a special focus on the nanotechnological advancements in the field. The two similar approaches of nanomaterials and nanosensors have been differentiated. Here, a comprehensive description of the molecularly imprinting polymers-nanomaterials for application in environmental analysis has been described. In order to highlight the industrialization of the molecularly imprinted polymers nanomaterials, the yearly development in the patents and products being marketed in the field have been reviewed. Here, the potential applications of these molecularly imprinted nanomaterials for environmental analysis have been discussed and a comprehensive description of the molecularly imprinted polymers-nanomaterials for application in environmental analysis is given. Finally, the concluding remarks and future perspective about the molecularly imprinted nanomaterials is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180

    Article  CAS  Google Scholar 

  • Andersson LI (1996) Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol. Anal Chem 68(1):111–117

    Article  CAS  Google Scholar 

  • Antonietti M, Kresge C (1998) Overview-materials aspects. Curr Opin Colloid Interface Sci 3:149–149

    Article  CAS  Google Scholar 

  • Ashraf S, Cluley A, Mercado C, Mueller A (2011) Imprinted polymers for the removal of heavy metal ions from water. Water Sci Technol 64(6):1325–1332

    Article  CAS  Google Scholar 

  • Azodi-Deilami S, Najafabadi AH, Asadi E, Abdouss M, Kordestani D (2014) Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchim Acta 181(15–16):1823–1832

    Article  CAS  Google Scholar 

  • Bass JD, Katz A (2003) Thermolytic synthesis of imprinted amines in bulk silica. Chem Mater 15(14):2757–2763

    Article  CAS  Google Scholar 

  • Behbahani M, Bagheri S, Amini MM, Sadeghi Abandansari H, Reza Moazami H, Bagheri A (2014) Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci 37(13):1610–1616

    Article  CAS  Google Scholar 

  • Birlik E, Ersöz A, Açıkkalp E, Denizli A, Say R (2007) Cr (III)-imprinted polymeric beads: sorption and preconcentration studies. J Hazard Mater 140(1):110–116

    Article  CAS  Google Scholar 

  • Branger C, Meouche W, Margaillan A (2013) Recent advances on ion-imprinted polymers. React Funct Polym 73(6):859–875

    Article  CAS  Google Scholar 

  • Brüggemann O, Haupt K, Ye L, Yilmaz E, Mosbach K (2000) New configurations and applications of molecularly imprinted polymers. J Chromatogr A 889(1):15–24

    Article  Google Scholar 

  • Büyüktiryaki S, Say R, Ersöz A, Birlik E, Denizli A (2005) Selective preconcentration of thorium in the presence of UO22+, Ce3+ and La3+ using Th (IV)-imprinted polymer. Talanta 67(3):640–645

    Article  Google Scholar 

  • Carter SR, Rimmer S (2002) Molecular recognition of caffeine by shell molecular imprinted core–shell polymer particles in aqueous media. Adv Mater 14(9):667–670

    Article  CAS  Google Scholar 

  • Carter SR, Rimmer S (2004) Surface molecularly imprinted polymer core–shell particles. Adv Funct Mater 14(6):553–561

    Article  CAS  Google Scholar 

  • Chaitidou S, Kotrotsiou O, Kiparissides C (2009) On the synthesis and rebinding properties of [Co (C2 H3 O2) 2 (z-Histidine)] imprinted polymers prepared by precipitation polymerization. Mater Sci Eng C 29(4):1415–1421

    Article  CAS  Google Scholar 

  • Chapuis F, Mullot J-U, Pichon V, Tuffal G, Hennion M-C (2006) Molecularly imprinted polymers for the clean-up of a basic drug from environmental and biological samples. J Chromatogr A 1135(2):127–134

    Article  CAS  Google Scholar 

  • Cheong WJ, Ali F, Choi JH, Lee JO, Sung KY (2013) Recent applications of molecular imprinted polymers for enantio-selective recognition. Talanta 106:45–59

    Article  CAS  Google Scholar 

  • Chronakis IS, Milosevic B, Frenot A, Ye L (2006) Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules 39(1):357–361

    Article  CAS  Google Scholar 

  • Dai J, Pan J, Xu L, Li X, Zhou Z, Zhang R, Yan Y (2012) Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. J Hazard Mater 205:179–188

    Article  Google Scholar 

  • Dai J, Wei X, Cao Z, Zhou Z, Yu P, Pan J, Zou T, Li C, Yan Y (2014) Highly-controllable imprinted polymer nanoshell at the surface of magnetic halloysite nanotubes for selective recognition and rapid adsorption of tetracycline. RSC Adv 4(16):7967–7978

    Article  CAS  Google Scholar 

  • Dam AH, Kim D (2008) Metal ion-imprinted polymer microspheres derived from copper methacrylate for selective separation of heavy metal ions. J Appl Polym Sci 108(1):14–24

    Article  CAS  Google Scholar 

  • Daniel S, Rao PP, Rao TP (2005) Investigation of different polymerization methods on the analytical performance of palladium (II) ion imprinted polymer materials. Anal Chim Acta 536(1):197–206

    Article  CAS  Google Scholar 

  • de Boer T, Mol R, de Zeeuw RA, de Jong GJ, Sherrington DC, Cormack PA, Ensing K (2002) Spherical molecularly imprinted polymer particles: a promising tool for molecular recognition in capillary electrokinetic separations. Electrophoresis 23(9):1296–1300

    Article  Google Scholar 

  • Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75(4):890–896

    Article  CAS  Google Scholar 

  • Esfandyari-Manesh M, Javanbakht M, Dinarvand R, Atyabi F (2012) Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as selective receptors and new carriers for the sustained release of carbamazepine. J Mater Sci Mater Med 23(4):963–972

    Article  CAS  Google Scholar 

  • Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications – a review. Anal Chim Acta 717:7–20

    Article  CAS  Google Scholar 

  • Gao D, Zhang Z, Wu M, Xie C, Guan G, Wang D (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129(25):7859–7866

    Article  CAS  Google Scholar 

  • Graham AL, Carlson CA, Edmiston PL (2002) Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Anal Chem 74(2):458–467

    Article  CAS  Google Scholar 

  • Gültekin A, Ersöz A, Hür D, Sarıözlü NY, Denizli A, Say R (2009) Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Appl Surf Sci 256(1):142–148

    Article  Google Scholar 

  • Gültekin A, Ersöz A, Denizli A, Say R (2012) Gold–silver-nanoclusters having cholic acid imprinted nanoshell. Talanta 93:364–370

    Article  Google Scholar 

  • Harvey SD (2005) Molecularly imprinted polymers for selective analysis of chemical warfare surrogate and nuclear signature compounds in complex matrices. J Sep Sci 28(11):1221–1230

    Article  CAS  Google Scholar 

  • Haupt K (2003) Molecularly imprinted polymers: the next generation. Anal Chem 75:376A–383A

    Article  CAS  Google Scholar 

  • Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504

    Article  CAS  Google Scholar 

  • He C, Long Y, Pan J, Li K, Liu F (2007) Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Biophys Methods 70(2):133–150

    Article  CAS  Google Scholar 

  • He D, Zhang X, Gao B, Wang L, Zhao Q, Chen H, Wang H, Zhao C (2014) Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry. Food Control 36(1):36–41

    Article  CAS  Google Scholar 

  • Ho K-C, Yeh W-M, Tung T-S, Liao J-Y (2005) Amperometric detection of morphine based on poly (3, 4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal Chim Acta 542(1):90–96

    Article  CAS  Google Scholar 

  • Irshad M, Iqbal N, Mujahid A, Afzal A, Hussain T, Sharif A, Ahmad E, Athar MM (2013) Molecularly imprinted nanomaterials for sensor applications. Nano 3(4):615–637

    Google Scholar 

  • Jiang Y, Kim D (2011) Effect of solvent/monomer feed ratio on the structure and adsorption properties of Cu 2+−imprinted microporous polymer particles. Chem Eng J 166(1):435–444

    Article  CAS  Google Scholar 

  • Katz A, Davis ME (2000) Molecular imprinting of bulk, microporous silica. Nature 403(6767):286–289

    Article  CAS  Google Scholar 

  • Kempe H, Kempe M (2004) Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromol Rapid Commun 25(1):315–320

    Article  CAS  Google Scholar 

  • Ki CD, Oh C, Oh S-G, Chang JY (2002) The use of a thermally reversible bond for molecular imprinting of silica spheres. J Am Chem Soc 124(50):14838–14839

    Article  CAS  Google Scholar 

  • Koohpaei A, Shahtaheri S, Ganjali M, Forushani AR, Golbabaei F (2009) Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. J Hazard Mater 170(2):1247–1255

    Article  CAS  Google Scholar 

  • Koshkin A, Sazhnikov V, Men’shikova AY, Pankova G, Evseeva T, Alfimov M (2012) Naphthalene vapor sorption by polymer nanoparticles with molecularly imprinted shells. Nanotechnol Russia 7(1–2):15–21

    Article  Google Scholar 

  • Kryscio DR, Peppas NA (2012) Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 8(2):461–473

    Article  CAS  Google Scholar 

  • Lai J-P, Lu X-Y, Lu C-Y, Ju H-F, He X-W (2001) Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase. Anal Chim Acta 442(1):105–111

    Article  CAS  Google Scholar 

  • Lai J-P, Yang M-L, Niessner R, Knopp D (2007) Molecularly imprinted microspheres and nanospheres for di (2-ethylhexyl) phthalate prepared by precipitation polymerization. Anal Bioanal Chem 389(2):405–412

    Article  CAS  Google Scholar 

  • Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal Chem 81(9):3576–3584

    Article  CAS  Google Scholar 

  • Le Moullec S, Begos A, Pichon V, Bellier B (2006) Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction. J Chromatogr A 1108(1):7–13

    Article  Google Scholar 

  • Le Moullec S, Truong L, Montauban C, Begos A, Pichon V, Bellier B (2007) Extraction of alkyl methylphosphonic acids from aqueous samples using a conventional polymeric solid-phase extraction sorbent and a molecularly imprinted polymer. J Chromatogr A 1139(2):171–177

    Article  Google Scholar 

  • Li Y, Yang H-H, You Q-H, Zhuang Z-X, Wang X-R (2006) Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem 78(1):317–320

    Article  CAS  Google Scholar 

  • Li H, Xu W, Wang N, Ma X, Niu D, Jiang B, Liu L, Huang W, Yang W, Zhou Z (2012) Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchim Acta 179(1–2):123–130

    Article  CAS  Google Scholar 

  • Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J (2013) Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron 44:70–76

    Article  CAS  Google Scholar 

  • Lieberzeit PA, Afzal A, Glanzing G, Dickert FL (2007) Molecularly imprinted sol–gel nanoparticles for mass-sensitive engine oil degradation sensing. Anal Bioanal Chem 389(2):441–446

    Article  CAS  Google Scholar 

  • Liu X, Wei Z-H, Huang Y-P, Yang J-R, Liu Z-S (2012) Molecularly imprinted nanoparticles with nontailing peaks in capillary electrochromatography. J Chromatogr A 1264:137–142

    Article  CAS  Google Scholar 

  • Lu F, Sun M, Fan L, Qiu H, Li X, Luo C (2012) Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of chrysoidine in food samples. Sensors Actuators B Chem 173:591–598

    Article  CAS  Google Scholar 

  • Ma J, Yuan L, Ding M, Wang S, Ren F, Zhang J, Du S, Li F, Zhou X (2011) The study of core–shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles. Biosens Bioelectron 26(5):2791–2795

    Article  CAS  Google Scholar 

  • Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors–the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846

    Article  CAS  Google Scholar 

  • Markowitz MA, Kust PR, Deng G, Schoen PE, Dordick JS, Clark DS, Gaber BP (2000) Catalytic silica particles via template-directed molecular imprinting. Langmuir 16(4):1759–1765

    Article  CAS  Google Scholar 

  • Martin-Esteban A (2001) Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds. Fresenius J Anal Chem 370(7):795–802

    Article  CAS  Google Scholar 

  • Matsui J, Nicholls IA, Karube I, Mosbach K (1996) Carbon−carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting: an artificial Class II aldolase. J Org Chem 61(16):5414–5417

    Article  CAS  Google Scholar 

  • Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68(21):3769–3774

    Article  CAS  Google Scholar 

  • Menaker A, Syritski V, Reut J, Öpik A, Horváth V, Gyurcsányi RE (2009) Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition. Adv Mater 21(22):2271–2275

    Article  CAS  Google Scholar 

  • Mertz E, Zimmerman SC (2003) Cross-linked dendrimer hosts containing reporter groups for amine guests. J Am Chem Soc 125(12):3424–3425

    Article  CAS  Google Scholar 

  • Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19(1):9–14

    Article  CAS  Google Scholar 

  • Mosbach K, Ramström O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Nat Biotechnol 14(2):163–170

    Article  CAS  Google Scholar 

  • Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol-gel materials. Materials 3(4):2196–2217

    Article  CAS  Google Scholar 

  • Ozin G, Arsenault A, Cademartiri L (2005) Nanochemistry: a chemical approach to nanomaterials. RSC Publishing, Cambridge

    Google Scholar 

  • Pardeshi S, Dhodapkar R, Kumar A (2014) Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chem 146:385–393

    Article  CAS  Google Scholar 

  • Pérez-Moral N, Mayes A (2004) Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal Chim Acta 504(1):15–21

    Article  Google Scholar 

  • Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants – a review. Anal Chim Acta 622(1):48–61

    Article  CAS  Google Scholar 

  • Piletsky S, Turner AP (2006) Molecular imprinting of polymers. Eurekah.com

    Google Scholar 

  • Piperno S, Tse Sum Bui B, Haupt K, Gheber LA (2011) Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly (vinyl alcohol) nanofibers. Langmuir 27(5):1547–1550

    Article  CAS  Google Scholar 

  • Piscopo L, Prandi C, Coppa M, Sparnacci K, Laus M, Laganà A, Curini R, D’Ascenzo G (2002) Uniformly sized molecularly imprinted polymers (MIPs) for 17β-estradiol. Macromol Chem Phys 203(10–11):1532–1538

    Article  CAS  Google Scholar 

  • Poma A, Turner AP, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28(12):629–637

    Article  CAS  Google Scholar 

  • Ramström O, Ye L, Mosbach K (1996) Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem Biol 3(6):471–477

    Article  Google Scholar 

  • Ramström O, Ye L, Gustavsson P-E (1998) Chiral recognition by molecularly imprinted polymers in aqueous media. Chromatographia 48(3–4):197–202

    Article  Google Scholar 

  • Rao MS, Dave BC (1998) Selective intake and release of proteins by organically-modified silica sol-gels. J Am Chem Soc 120(50):13270–13271

    Article  CAS  Google Scholar 

  • Saatçılar Ö, Şatıroğlu N, Say R, Bektas S, Denizli A (2006) Binding behavior of Fe3+ ions on ion-imprinted polymeric beads for analytical applications. J Appl Polym Sci 101(5):3520–3528

    Article  Google Scholar 

  • Sadeghi S, Mofrad AA (2007) Synthesis of a new ion imprinted polymer material for separation and preconcentration of traces of uranyl ions. React Funct Polym 67(10):966–976

    Article  CAS  Google Scholar 

  • Say R, Birlik E, Ersöz A, Yılmaz F, Gedikbey T, Denizli A (2003) Preconcentration of copper on ion-selective imprinted polymer microbeads. Anal Chim Acta 480(2):251–258

    Article  CAS  Google Scholar 

  • Schweitz L, Spégel P, Nilsson S (2000) Molecularly imprinted microparticles for capillary electrochromatographic enantiomer separation of propranolol. Analyst 125(11):1899–1901

    Article  CAS  Google Scholar 

  • Sellergren B (1999) Polymer-and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. TrAC Trends Anal Chem 18(3):164–174

    Article  CAS  Google Scholar 

  • Sellergren B (2000) Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry, vol 23. Elsevier, Amsterden

    Google Scholar 

  • Shakerian F, Kim K-H, Kwon E, Szulejko JE, Kumar P, Dadfarnia S, Shabani AMH (2016) Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. TrAC Trends Anal Chem 83:55–69

    Article  CAS  Google Scholar 

  • Shamsipur M, Besharati-Seidani A (2011) Synthesis of a novel nanostructured ion-imprinted polymer for very fast and highly selective recognition of copper (II) ions in aqueous media. React Funct Polym 71(2):131–139

    Article  CAS  Google Scholar 

  • Shamsipur M, Rajabi HR, Beyzavi MH, Sharghi H (2013) Bulk polymer nanoparticles containing a tetrakis (3-hydroxyphenyl) porphyrin for fast and highly selective separation of mercury ions. Microchim Acta 180(9–10):791–799

    Article  CAS  Google Scholar 

  • Shi H, Tsai W-B, Garrison MD, Ferrari S, Ratner BD (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 398(6728):593–597

    Article  CAS  Google Scholar 

  • Spégel P, Schweitz L, Nilsson S (2001) Molecularly imprinted microparticles for capillary electrochromatography: studies on microparticle synthesis and electrolyte composition. Electrophoresis 22(17):3833–3841

    Article  Google Scholar 

  • Subrahmanyam S, Guerreiro A, Poma A, Moczko E, Piletska E, Piletsky S (2013) Optimisation of experimental conditions for synthesis of high affinity MIP nanoparticles. Eur Polym J 49(1):100–105

    Article  CAS  Google Scholar 

  • Sueyoshi Y, Fukushima C, Yoshikawa M (2010) Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membr Sci 357(1):90–97

    Article  CAS  Google Scholar 

  • Sueyoshi Y, Utsunomiya A, Yoshikawa M, Robertson GP, Guiver MD (2012) Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranes☆. J Membr Sci 401:89–96

    Article  Google Scholar 

  • Tamayo FG, Casillas JL, Martin-Esteban A (2003) Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples. Anal Chim Acta 482(2):165–173

    Article  CAS  Google Scholar 

  • Tan F, Sun D, Gao J, Zhao Q, Wang X, Teng F, Quan X, Chen J (2013) Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. J Hazard Mater 244:750–757

    Article  Google Scholar 

  • Tobiasz A, Walas S, Landowska L, Konefał-Góral J (2012) Improvement of copper FAAS determination conditions via preconcentration procedure with the use of salicylaldoxime complex trapped in polymer matrix. Talanta 96:82–88

    Article  CAS  Google Scholar 

  • Tokonami S, Shiigi H, Nagaoka T (2009) Review: micro-and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal Chim Acta 641(1):7–13

    Article  CAS  Google Scholar 

  • Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GE (2002) Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation. Macromol Chem Phys 203(13):1965–1973

    Article  CAS  Google Scholar 

  • Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645–647

    Article  CAS  Google Scholar 

  • Wackerlig J, Schirhagl R (2015) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88(1):250–261

    Article  Google Scholar 

  • Wang J, Cormack PA, Sherrington DC, Khoshdel E (2003) Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew Chem Int Ed 42(43):5336–5338

    Article  CAS  Google Scholar 

  • Wang X, Wang L, He X, Zhang Y, Chen L (2009) A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta 78(2):327–332

    Article  CAS  Google Scholar 

  • Wang H, Wu X, Zhao H, Quan X (2012) Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified TiO 2 nanotubes. Chin Sci Bull 57(6):601–605

    Article  CAS  Google Scholar 

  • Wei S, Molinelli A, Mizaikoff B (2006) Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosens Bioelectron 21(10):1943–1951

    Article  CAS  Google Scholar 

  • Wei X, Zhou Z, Hao T, Li H, Xu Y, Lu K, Wu Y, Dai J, Pan J, Yan Y (2015) Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2, 4-dichlorophenol. Anal Chim Acta 870:83–91

    Article  CAS  Google Scholar 

  • Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting-synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117(27):7105–7111

    Article  CAS  Google Scholar 

  • Wu L, Liu F, Wang G, Guo Z, Zhao J (2016) Bifunctional monomer molecularly imprinted polymers based on the surface of multiwalled carbon nanotubes for solid-phase extraction of tartrazine from drinks. RSC Adv 6(1):464–471

    Article  CAS  Google Scholar 

  • Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew Chem 34(17):1812–1832

    Article  CAS  Google Scholar 

  • Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102(1):1–28

    Article  CAS  Google Scholar 

  • Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180(15–16):1359–1370

    Article  CAS  Google Scholar 

  • Wulff G, Sarhan A (1972) Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angew Chem 84(8):364–364

    Article  Google Scholar 

  • Wulff G, Schauhoff S (1991) Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org Chem 56(1):395–400

    Article  CAS  Google Scholar 

  • Wulff G, Gross T, Schönfeld R (1997) Enzyme models based on molecularly imprinted polymers with strong esterase activity. Angew Chem 36(18):1962–1964

    Article  CAS  Google Scholar 

  • Xiao P, Dudal Y, Corvini PF-X, Spahr P, Shahgaldian P (2012) Synthesis and characterization of fluoroquinolone-imprinted polymeric nanoparticles. React Funct Polym 72(4):287–293

    Article  CAS  Google Scholar 

  • Xie C, Zhang Z, Wang D, Guan G, Gao D, Liu J (2006) Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78(24):8339–8346

    Article  CAS  Google Scholar 

  • Xu S, Guo C, Li Y, Yu Z, Wei C, Tang Y (2014) Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils. J Hazard Mater 264:34–41

    Article  CAS  Google Scholar 

  • Yan M, Ramström O (2005) Molecularly imprinted materials-science and technology. Marcel Dekker, New York

    Google Scholar 

  • Yang H-H, Zhang S-Q, Tan F, Zhuang Z-X, Wang X-R (2005) Surface molecularly imprinted nanowires for biorecognition. J Am Chem Soc 127(5):1378–1379

    Article  CAS  Google Scholar 

  • Yao Q, Zhou Y (2009) Synthesis of TiO2 hybrid molecular imprinted nanospheres linked by silane coupling agent. J Inorg Organomet Polym Mater 19(4):466–472

    Article  CAS  Google Scholar 

  • Ye L, Mosbach K (2001) Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept. J Am Chem Soc 123(12):2901–2902

    Article  CAS  Google Scholar 

  • Ye L, Ramström O, Mosbach K (1998) Molecularly imprinted polymeric adsorbents for byproduct removal. Anal Chem 70(14):2789–2795

    Article  CAS  Google Scholar 

  • Ye L, Cormack PA, Mosbach K (2001) Molecular imprinting on microgel spheres. Anal Chim Acta 435(1):187–196

    Article  CAS  Google Scholar 

  • Yoshida M, Uezu K, Goto M, Furusaki S (1999) Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions. J Appl Polym Sci 73(7):1223–1230

    Article  CAS  Google Scholar 

  • Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584(1):112–121

    Article  CAS  Google Scholar 

  • Yu JC, Lai EP (2012) Molecularly imprinted polymer nanomaterials for mycotoxin extraction. In: Appell M et al (eds) Mycotoxin prevention and control in agriculture, ACS Symposium Series. ACS Publications, American Chemical Society, Washington, DC

    Google Scholar 

  • Zhu L, Zhu Z, Zhang R, Hong J, Qiu Y (2011) Synthesis and adsorption performance of lead ion-imprinted micro-beads with combination of two functional monomers. J Environ Sci 23(12):1955–1961

    Article  CAS  Google Scholar 

  • Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Synthetic hosts by monomolecular imprinting inside dendrimers. Nature 418(6896):399–403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, R., Muhammad, M. (2019). Molecularly Imprinted Polymeric Nanomaterials for Environmental Analysis. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology. Environmental Chemistry for a Sustainable World, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-98708-8_5

Download citation

Publish with us

Policies and ethics