Skip to main content

Parameter Estimation of Essential Amino Acids in Arabidopsis thaliana Using Hybrid of Bees Algorithm and Harmony Search

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 12th International Conference (PACBB2018 2018)

Abstract

Mathematical models of metabolic processes are the cornerstone of computational systems biology. In model building, the task of parameter estimation is difficult due to the huge numbers of kinetics parameters involved. The common way of estimating the parameters is to formulate it as an optimization problem. Global optimization methods can be applied by minimizing the distance between experimental data and predicted models. This paper proposes the Hybrid of Bees Algorithm and Harmony Search (BAHS) to estimate the kinetics parameters of essential amino acid production in the aspartate metabolism for Arabidopsis thaliana. The performance of the BAHS is evaluated and compared with other algorithms. The results show that BAHS performed better as it improved the performance of the original BA by 60%. Meanwhile, it takes less computational time to estimate the kinetics parameters of essential amino acid production for Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219, 57–83 (2009)

    Article  MathSciNet  Google Scholar 

  2. Remli, M.A., Deris, S., Mohamad, M.S., Omatu, S., Corchado, J.M.: An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems. Eng. Appl. Artif. Intell. 62, 164–180 (2017)

    Article  Google Scholar 

  3. Baker, S.M., Schallau, K., Junker, B.H.: Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. J. Integr. Bioinform. 7, 1–9 (2010)

    Article  Google Scholar 

  4. Koshel, R.J.: Enhancement of the downhill simplex method of optimization. Proc. SPIE 4832, 270–282 (2002)

    Article  Google Scholar 

  5. Schmidt, H., Jirstrand, M.: Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22, 514–515 (2006)

    Article  Google Scholar 

  6. Curien, G., Bastien, O.: Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol. Syst. Biol. 5, 271 (2009)

    Article  Google Scholar 

  7. Leong, Y.Y., Chong, C.K., Choon, Y.W., En, L., Deris, S., Illias, R.M., Omatu, S., Saberi, M.: Simulation of fermentation pathway using Bees Algorithm. Adv. Distrib. Comput. Artif. Intell. J. 1, 13–19 (2013)

    Google Scholar 

  8. Bahamish, H.A.A., Abdullah, R., Salam, R.A.: Protein conformational search using Bees Algorithm (2008). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4530597

  9. Tashkova, K., Korošec, P., Šilc, J., Todorovski, L., Džeroski, S.: Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. BMC Syst. Biol. 5, 159 (2011)

    Article  Google Scholar 

  10. Pham, D.T., Castellani, M.: The Bees Algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223, 2919–2938 (2009)

    Article  Google Scholar 

  11. Nguyen, K., Nguyen, P., Tran, N.: A hybrid algorithm of Harmony Search and Bees Algorithm for a University Course Timetabling Problem. Int. J. Comput. Sci. Issues 9, 12–17 (2012)

    Google Scholar 

  12. Wang, Z.G., Wong, Y.S., Rahman, M.: Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing. Int. J. Adv. Manuf. Technol. 24, 727–732 (2004)

    Article  Google Scholar 

  13. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 19, 43–53 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia for supporting this research by the Fundamental Research Grant Schemes (grant number: R.J130000.7828.4F886 and R.J130000.7828.4F720). We would also like to thank Universiti Malaysia Pahang for sponsoring this research via the RDU Grant (Grant Number: RDU180307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Saberi Mohamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aw, M.Y. et al. (2019). Parameter Estimation of Essential Amino Acids in Arabidopsis thaliana Using Hybrid of Bees Algorithm and Harmony Search. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_2

Download citation

Publish with us

Policies and ethics