Abstract
In the past decades, metabolic engineering has received great attention from different sectors of science due to its important role in enhancing the over expression of the target phenotype by manipulating the metabolic pathway. The advent of metabolic engineering has further laid the foundation for computational biology, leading to the development of computational approaches for suggesting genetic manipulation. Previously, conventional methods have been used to enhance the production of lactate and succinate in E. coli. However, these products are always far below their theoretical maxima. In this research, a hybrid algorithm is developed to seek optimal solutions in order to increase the overproduction of lactate and succinate by gene knockout in E. coli. The hybrid algorithm employed the Simple Constrained Artificial Bee Colony (SCABC) algorithm, using swarm intelligence as an optimization algorithm to optimize the objective function, where lactate and succinate productions are maximized by simulating gene knockout in E. coli. In addition, Flux Balance Analysis (FBA) is used as a fitness function in the SCABC algorithm to assess the growth rate of E. coli and the productivity of lactate and succinate. As a result of the research, the gene knockout list which induced the highest production of lactate and succinate is obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vemuri, G.N., Eiteman, M.A., Altman, E.: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 68, 1715–1727 (2002)
Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A., Ingram, L.O.: Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881–893 (2008)
Zhou, L., Zuo, Z.-R., Chen, X.-Z., Niu, D.-D., Tian, K.-M., Prior, B.A., Shen, W., Shi, G.-Y., Singh, S., Wang, Z.-X.: Evaluation of genetic manipulation strategies on D-lactate Production by Escherichia coli. Curr. Microbiol. 62, 981–989 (2011)
Lee, S., Lee, D., Kim, T., Kim, B.: Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71, 7880–7887 (2005)
Salleh, A.H.M., Mohamad, M.S., Deris, S., Omatu, S., Fdez-Riverola, F., Corchado, J.M.: Gene knockout identification for metabolite production improvement using a hybrid of genetic ant colony optimization and flux balance analysis. Biotechnol. Bioprocess Eng. 20, 685–693 (2015)
Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., En Chai, L., Chong, C.K.: Identifying gene knockout strategy using Bees Hill Flux Balance Analysis (BHFBA) for improving the production of ethanol in bacillus subtilis. In: Advances in Biomedical Infrastructure 2013. Studies in Computational Intelligence, vol. 477, pp. 117–126. Springer, Heidelberg (2013)
Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Omatu, S., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS One 9(7), e102744 (2014)
Burgard, A.P., Pharkya, P., Maranas, C.D.: OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)
Martino, G.D.S., Cardillo, F.A., Starita, A.: A new swarm intelligence coordination model inspired by collective prey retrieval and its application to image alignment. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 691–700. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_70
Patil, K., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6, 308 (2005)
Raman, K., Chandra, N.: Flux balance analysis of biological systems: applications and challenges. Brief Bioinform. 10(4), 435–449 (2009)
Brajevic, I., Tuba, M., Subotic, M.: Performance of the improved artificial bee colony algorithm on standard engineering constrained problems. Int. J. Math. Comput. Simul. 5, 135–143 (2011)
Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinform. 9, 499 (2008)
Yang, Y.T., Bennett, G.N., San, K.Y.: Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol. Bioeng. 65, 291–297 (1999)
Zhu, J., Shimizu, K.: Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab. Eng. 7, 104–115 (2005)
Acknowledgement
We would like to thank Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia for supporting this research by the Fundamental Research Grant Schemes (grant number: R.J130000.7828.4F886 and R.J130000.7828.4F720). We would also like to thank Universiti Malaysia Pahang for sponsoring this research via the RDU Grant (Grant Number: RDU180307).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hon, M.K. et al. (2019). A Hybrid of Simple Constrained Artificial Bee Colony Algorithm and Flux Balance Analysis for Enhancing Lactate and Succinate in Escherichia Coli. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-98702-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98701-9
Online ISBN: 978-3-319-98702-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)