Skip to main content

A Review on Metabolomics Data Analysis for Cancer Applications

  • 438 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 803)

Abstract

Cancer cells undergo metabolic changes that contribute to tumorigenesis, which can be determined using metabolomics data produced by techniques such as nuclear magnetic resonance and mass spectroscopy, and analyzed through statistical and machine learning methods. Since these data represent well the metabolic phenotype of these cells, they are very relevant in cancer research, to better understand tumour cells metabolism and help in efforts of biomarker and drug target discovery. This mini-review focuses on data analysis methods that are commonly used to extract knowledge from cancer metabolomics data, such as univariate analysis and supervised and unsupervised multivariate data analysis, including clustering and machine learning.

Keywords

  • Cancer
  • Metabolomics
  • NMR
  • Mass spectrometry
  • Machine learning
  • Chemometrics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98702-6_19
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-98702-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

References

  1. Warburg, O.: On the origin of cancer cells. Science 123(3191), 309–314 (1956)

    CrossRef  Google Scholar 

  2. Pavlova, N.N., Thompson, C.B.: The emerging hallmarks of cancer metabolism. Cell Metab. 23(1), 27–47 (2016)

    CrossRef  Google Scholar 

  3. Wang, H., et al.: Tissue metabolic profiling of human gastric cancer assessed by 1H NMR. BMC Cancer 16(1), 371 (2016)

    CrossRef  MathSciNet  Google Scholar 

  4. Battini, S., et al.: Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism profiling predicts clinical outcome of patients. BMC Med. 15(1), 56 (2017)

    Google Scholar 

  5. Hart, C.D., et al.: Serum metabolomic profiles identify ER-positive early breast cancer patients at increased risk of disease recurrence in a multicenter population. Clin. Cancer Res. 23(6), 1422–1431 (2017)

    CrossRef  Google Scholar 

  6. Belkaid, A., et al.: Metabolic effect of estrogen receptor agonists on breast cancer cells in the presence or absence of carbonic anhydrase inhibitors. Metabolites 6(2), 16 (2016)

    Google Scholar 

  7. Hao, D., et al.: Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment. Metabolomics 12(3), 58 (2016)

    Google Scholar 

  8. Fahrmann, J.F., et al.: Serum phosphatidylethanolamine levels distinguish benign from malignant solitary pulmonary nodules and represent a potential diagnostic biomarker for lung cancer. Cancer Biomarkers 16(4), 609–617 (2016)

    Google Scholar 

  9. Mathé, E.A., et al.: Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 74(12), 3259–3270 (2014)

    CrossRef  Google Scholar 

  10. Zhu, J., et al.: Colorectal cancer detection using targeted serum metabolic profiling. J. Proteome Res. 13(9), 4120–4130 (2014)

    Google Scholar 

  11. Vermeersch, K., et al.: OVCAR-3 spheroid-derived cells display distinct metabolic profiles. PLoS One 10(2), e0118262 (2015)

    CrossRef  Google Scholar 

  12. Ranjbar, M., et al.: GC-MS based plasma metabolomics for identification of candidate biomarkers for hepatocellular carcinoma in Egyptian cohort. PLoS One 10(6), e0127299 (2015)

    CrossRef  Google Scholar 

  13. Amiot, A., et al.: 1 H NMR spectroscopy of fecal extracts enables detection of advanced Colorectal Neoplasia. J. Proteome Res. 14(9), 3871–3881 (2015)

    CrossRef  Google Scholar 

  14. Bertini, I., et al.: Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 72(1), 356–364 (2012)

    CrossRef  Google Scholar 

  15. Bhute, V.J., et al.: The poly (ADP-Ribose) polymerase inhibitor veliparib and radiation cause significant cell line dependent metabolic changes in breast cancer cells. Sci. Rep. 6(1), 36061 (2016)

    CrossRef  Google Scholar 

  16. Chan, A.W., et al.: 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br. J. Cancer 114(1), 59–62 (2016)

    CrossRef  Google Scholar 

  17. Fages, A., et al.: Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med. 13(1), 242 (2015)

    CrossRef  Google Scholar 

  18. Kim, H.S., et al.: Investigation of discriminant metabolites in tamoxifen-resistant and choline kinase-alpha-downregulated breast cancer cells using 1H-nuclear magnetic resonance spectroscopy. PLoS One 12(6), e0179773 (2017)

    CrossRef  Google Scholar 

  19. Monteiro, M.S., et al.: Nuclear magnetic resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma. Sci. Rep. 6(1), 37275 (2016)

    CrossRef  Google Scholar 

  20. Morin, P.J., et al.: NMR metabolomics analysis of the effects of 5-lipoxygenase inhibitors on metabolism in glioblastomas. J. Proteome Res. 12(5), 2165–2176 (2013)

    CrossRef  Google Scholar 

  21. Mun, J., et al.: Discrimination of basal cell carcinoma from normal skin tissue using high-resolution magic angle spinning 1H NMR spectroscopy. PLoS One 11(3), e0150328 (2016)

    CrossRef  Google Scholar 

  22. Roberts, M.J., et al.: Seminal plasma enables selection and monitoring of active surveillance candidates using nuclear magnetic resonance-based metabolomics: a preliminary investigation. Prostate Int. 5(4), 149–157 (2017)

    CrossRef  Google Scholar 

  23. Shao, W., et al.: Malignancy-associated metabolic profiling of human glioma cell lines using 1H NMR spectroscopy. Mol. Cancer 13(1), 197 (2014)

    CrossRef  Google Scholar 

  24. Tsai, I., et al.: Metabolomic dynamic analysis of hypoxia in MDA-MB-231 and the comparison with inferred metabolites from transcriptomics data. Cancers 5(2), 491–510 (2013)

    CrossRef  Google Scholar 

  25. Uifăalean, A., et al.: The impact of Soy Iso avones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. Int. J. Mol. Sci. 17(9), 1443 (2016)

    CrossRef  Google Scholar 

  26. Yang, Q.J., et al.: Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J. Cachexia Sarcopenia Muscle 9(1), 1–15 (2017)

    Google Scholar 

  27. Miyamoto, S., et al.: Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry. Metabolites 5(2), 192–210 (2015)

    CrossRef  Google Scholar 

  28. Batova, A., et al.: Englerin A induces an acute inflammatory response and reveals lipid metabolism and ER stress as targetable vulnerabilities in renal cell carcinoma. PLoS One 12(3), e0172632 (2017)

    CrossRef  Google Scholar 

  29. Xiao, J.F., et al.: LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort. J. Proteome Res. 11(12), 5914–5923 (2012)

    CrossRef  Google Scholar 

  30. Dhakshinamoorthy, S., et al.: Metabolomics identifies the intersection of phosphoethanolamine with menaquinone-triggered apoptosis in an in vitro model of leukemia. Mol. BioSyst. 11(9), 2406–2416 (2015)

    Google Scholar 

  31. Mackay, E.: Fatty acid synthesis in colorectal cancer: characterization of lipid metabolism in serum, tumour, and normal host tissues. Ph.D. thesis, University of Calgary (2015)

    Google Scholar 

  32. Vermeersch, K.A., et al.: Distinct metabolic responses of an ovarian cancer stem cell line. BMC Syst. Biol. 8(1), 134 (2014)

    Google Scholar 

  33. Hilvo, M., et al.: Monounsaturated fatty acids in serum triacylglycerols are associated with response to neoadjuvant chemotherapy in breast cancer patients. Int. J. Cancer 134(7), 1725–1733 (2014)

    CrossRef  Google Scholar 

  34. Ressom, H.W., et al.: Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Analytica Chimica Acta 743, 90–100 (2012)

    CrossRef  Google Scholar 

  35. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    CrossRef  Google Scholar 

  36. Zhang, T., et al.: Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS One 8(6), e65880 (2013)

    Google Scholar 

  37. Liu, R., et al.: Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform. Int. J. Mol. Sci. 14(5), 8899–8911 (2013)

    CrossRef  Google Scholar 

  38. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1(233), pp. 281–297 (1967)

    Google Scholar 

  39. Locasale, J.W., et al.: Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol. Cellular Proteomics 11(6), M111.014688 (2012)

    Google Scholar 

  40. Wold, H.: Estimation of principal components and related models by iterative least squares. In: Multivariate Analysis, pp. 1391–1420 (1966)

    Google Scholar 

  41. Barker, M., Rayens, W.: Partial least squares for discrimination. J. Chemom. 17(3), 166–173 (2003)

    CrossRef  Google Scholar 

  42. Trygg, J., Wold, S.: Orthogonal projections to latent structures (OPLS). J. Chemom. 16(3), 119–128 (2002)

    Google Scholar 

  43. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  Google Scholar 

  44. Liu, Y., et al.: NMR and LC/MS-based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int. J. Cancer 135(3), 658–668 (2014)

    Google Scholar 

  45. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  46. Chen, Y., et al.: Metabolic profiling of normal hepatocyte and hepatocellular carcinoma cells via 1 H nuclear magnetic resonance spectroscopy. Cell Biol. Int. 9999, 1–10 (2017)

    Google Scholar 

  47. Gaul, D.A., et al.: Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci. Rep. 5, 16351 (2015)

    CrossRef  Google Scholar 

  48. Costa, C., et al.: An R package for the integrated analysis of metabolomics and spectral data. Comput. Meth. Prog. Biomed. 129, 117–124 (2016)

    CrossRef  Google Scholar 

  49. Singh, A., et al.: 1H NMR metabolomics reveals association of high expression of inositol 1,4,5 trisphosphate receptor and metabolites in breast cancer patients. PLoS One 12(1), 1–20 (2017)

    Google Scholar 

  50. Haug, K., et al.: MetaboLights - an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41(D1), D781–D786 (2013)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work is co-funded by the North Portugal Regional Operational Programme, under the “Portugal 2020”, through the European Regional Development Fund (ERDF), within project SISBI- Ref\(^a\)NORTE-01-0247-FEDER-003381.

This study was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cardoso, S., Baptista, D., Santos, R., Rocha, M. (2019). A Review on Metabolomics Data Analysis for Cancer Applications. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_19

Download citation