Skip to main content

Design and Optimal Sizing of Microgrids

  • Chapter
  • First Online:
Microgrids Design and Implementation

Abstract

This chapter introduces concepts to understand, formulate, and solve a microgrid design and optimal sizing problem. First, basic concepts of energy potential assessment are introduced, in order to determine if a location is suitable for PV and wind generation systems implementation. Second, different modeling approaches are presented and the required characteristics for the optimal microgrid sizing problem are discussed. Third, basic concepts about load estimation for the design and sizing of microgrids are introduced. Fourth, the most common microgrid sizing criteria are presented and classified according to the type of analysis. Fifth, basic concepts related to multi-objective optimization are introduced and some common design approaches and optimization algorithms are presented, emphasizing into multi-objective genetic algorithms. In addition, microgrids design commercial software is reviewed. Sixth, some IEEE standards related to the design, operation, and implementation of microgrids are presented. Finally, the chapter concludes with key remarks on microgrid design and sizing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111–2118.

    Article  Google Scholar 

  2. Khatib, T., Mohamed, A., & Sopian, K. (2013). A review of photovoltaic systems size optimization techniques. Renewable and Sustainable Energy Reviews, 22, 454–465.

    Article  Google Scholar 

  3. Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380–389.

    Article  Google Scholar 

  4. Chauhan, A., & Saini, R. P. (2014). A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99–120.

    Article  Google Scholar 

  5. Upadhyay, S., & Sharma, M. P. (2014). A review on configurations, control and sizing methodologies of hybrid energy systems. Renewable and Sustainable Energy Reviews, 38, 47–63.

    Article  Google Scholar 

  6. Sinha, S., & Chandel, S. S. (2015). Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renewable and Sustainable Energy Reviews, 50, 755–769.

    Article  Google Scholar 

  7. Al Busaidi, A. S., Kazem, H. A., Al-Badi, A. H., & Farooq Khan, M. (2016). A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman. Renewable and Sustainable Energy Reviews, 53, 185–193.

    Article  Google Scholar 

  8. Ucar, A., & Balo, F. (2010). Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renewable and Sustainable Energy Reviews, 14(7), 1901–1912.

    Article  Google Scholar 

  9. Suarez, R. A., Toscano, P., Siri, R., Muse, P., & Abal, G. (2012). Recent advances in solar resource assessment in Uruguay. 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA) (pp. 1–7).

    Google Scholar 

  10. Prasad, R. D., Bansal, R. C., & Sauturaga, M. (2009). Some of the design and methodology considerations in wind resource assessment. IET Renewable Power Generation, 3(1), 53.

    Article  Google Scholar 

  11. Osma Pinto, G. A., & Plata, G. O. (2012). Design of a photovoltaic-wind power generation system with grid connection and two micro-grids. 2012 I.E. International Symposium on Alternative Energies and Energy Quality (SIFAE) (pp. 1–6).

    Google Scholar 

  12. de Araujo Lima, L., & Bezerra Filho, C. R. (2010). Wind energy assessment and wind farm simulation in Triunfo—Pernambuco, Brazil. Renewable Energy, 35(12), 2705–2713.

    Article  Google Scholar 

  13. Đurišić, Ž., & Mikulović, J. (2012). A model for vertical wind speed data extrapolation for improving wind resource assessment using WAsP. Renewable Energy, 41, 407–411.

    Article  Google Scholar 

  14. Migoya, E., Crespo, A., Jiménez, Á., García, J., & Manuel, F. (2007). Wind energy resource assessment in Madrid region. Renewable Energy, 32(9), 1467–1483.

    Article  Google Scholar 

  15. Castellanos, F., & Ramesar, V. I. (2006). Characterization and estimation of wind energy resources using autoregressive modelling and probability density functions. Wind Engineering, 30(1), 1–14.

    Article  Google Scholar 

  16. Maunsell, D., Lyons, T. J., & Whale, J. (1997). Wind resource assessment of a site in Western Australia. Solar 2004 Life, Universe Renewables (pp. 1–10).

    Google Scholar 

  17. Ordóñez, G., Osma, G., Vergara, P., & Rey, J. (2014). Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series Materials Science and Engineering, 59, 12004.

    Article  Google Scholar 

  18. Ahmed, A. S. (2010). Wind energy as a potential generation source at Ras Benas, Egypt. Renewable and Sustainable Energy Reviews, 14(8), 2167–2173.

    Article  Google Scholar 

  19. Yaniktepe, B., Koroglu, T., & Savrun, M. M. (2013). Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey. Renewable and Sustainable Energy Reviews, 21, 703–711.

    Article  Google Scholar 

  20. Ouammi, A., Dagdougui, H., Sacile, R., & Mimet, A. (2010). Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renewable and Sustainable Energy Reviews, 14(7), 1959–1968.

    Article  Google Scholar 

  21. Duan, W., Chen, J., & Feng, H. (2011). Comparative research on methods of calculating Weibull distribution parameters of wind speed. 2011 Asia-Pacific Power and Energy Engineering Conference, no. 916021018 (pp. 1–4).

    Google Scholar 

  22. Ilinca, A., McCarthy, E., Chaumel, J.-L., & Rétiveau, J.-L. (2003). Wind potential assessment of Quebec Province. Renewable Energy, 28(12), 1881–1897.

    Article  Google Scholar 

  23. Bosch, J. L., Batlles, F. J., Zarzalejo, L. F., & López, G. (2010). Solar resources estimation combining digital terrain models and satellite images techniques. Renewable Energy, 35(12), 2853–2861.

    Article  Google Scholar 

  24. Gurtuna, O., & Prevot, A. (2011) An overview of solar resource assessment using meteorological satellite data. Proceedings of 5th International Conference on Recent Advances in Space Technologies—RAST2011 (pp. 209–212).

    Google Scholar 

  25. Khare, V., Nema, S., & Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 58, 23–33.

    Article  Google Scholar 

  26. Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Farhana, Z. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 18, 1402–1412.

    Article  Google Scholar 

  27. Martins, F. R., Pereira, E. B., Silva, S. A. B., Abreu, S. L., & Colle, S. (2008). Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy, 36(8), 2853–2864.

    Article  Google Scholar 

  28. Pourmousavi, S. A., Nehrir, M. H., & Sharma, R. K. (2015). Multi-timescale power management for islanded microgrids including storage and demand response. IEEE Transactions on Smart Grid, 6(3), 1185–1195.

    Article  Google Scholar 

  29. Nfah, E. M., Ngundam, J. M., & Tchinda, R. (2007). Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. Renewable Energy, 32(5), 832–844.

    Article  Google Scholar 

  30. Slootweg, J. G., de Haan, S. W. H., Polinder, H., & Kling, W. L. (2003). General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on Power Apparatus and Systems, 18(1), 144–151.

    Article  Google Scholar 

  31. Bouscayrol, A., Delarue, P., & Guillaud, X. (2005). Power strategies for maximum control structure of a wind energy conversion system with a synchronous machine. Renewable Energy, 30(15), 2273–2288.

    Article  Google Scholar 

  32. Adamo, F., Attivissimo, F., Di Nisio, A., & Spadavecchia, M. (2011). Characterization and testing of a tool for photovoltaic panel modeling. IEEE Transactions on Instrumentation and Measurement, 60(5), 1613–1622.

    Article  Google Scholar 

  33. Saloux, E., Teyssedou, A., & Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, 85(5), 713–722.

    Article  Google Scholar 

  34. Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589.

    Article  Google Scholar 

  35. Ma, T., Yang, H., & Lu, L. (2014). Solar photovoltaic system modeling and performance prediction. Renewable and Sustainable Energy Reviews, 36, 304–315.

    Article  Google Scholar 

  36. Arun, P., Banerjee, R., & Bandyopadhyay, S. (2008). Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach. Energy, 33(7), 1155–1168.

    Article  Google Scholar 

  37. Horrein, L., Bouscayrol, A., Cheng, Y., & El Fassi, M. (2015). Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using energetic macroscopic representation. Energy Conversion and Management, 91, 280–291.

    Article  Google Scholar 

  38. Baert, J., Jemei, S., Chamagne, D., Hissel, D., Hibon, S., & Hegy, D. (2012). Energetic macroscopic representation of a naturally-aspirated engine coupled to a salient pole synchronous machine. IFAC Proceedings, 45(21), 435–440.

    Article  Google Scholar 

  39. Wang, K., Hissel, D., Péra, M. C., Steiner, N., Marra, D., Sorrentino, M., Pianese, C., Monteverde, M., Cardone, P., & Saarinen, J. (2011). A review on solid oxide fuel cell models. International Journal of Hydrogen Energy, 36(12), 7212–7228.

    Article  Google Scholar 

  40. Boulon, L., Hissel, D., Bouscayrol, A., & Pera, M.-C. (2010). From modeling to control of a PEM fuel cell using energetic macroscopic representation. IEEE Transactions on Industrial Electronics, 57(6), 1882–1891.

    Article  Google Scholar 

  41. Correa, J. M., Farret, F. A., Canha, L. N., & Simoes, M. G. (2004). An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Transactions on Industrial Electronics, 51(5), 1103–1112.

    Article  Google Scholar 

  42. Mann, R. F., Amphlett, J. C., Hooper, M. A. I., Jensen, H. M., Peppley, B. A., & Roberge, P. R. (2000). Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1–2), 173–180.

    Article  Google Scholar 

  43. Ceraolo, M. (2000). New dynamical models of lead-acid batteries. IEEE Transactions on Power Apparatus and Systems, 15(4), 1184–1190.

    Article  Google Scholar 

  44. Tremblay, O., Dessaint, L., & Dekkiche, A. (2007). A generic battery model for the dynamic simulation of hybrid electric vehicles. 2007 I.E. Vehicle Power and Propulsion Conference (pp. 284–289).

    Google Scholar 

  45. Shi, L., & Crow, M. L. (2008). Comparison of ultracapacitor electric circuit models. 2008 I.E. Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1–6).

    Google Scholar 

  46. Devillers, N., Jemei, S., Péra, M.-C., Bienaimé, D., & Gustin, F. (2014). Review of characterization methods for supercapacitor modelling. Journal of Power Sources, 246, 596–608.

    Article  Google Scholar 

  47. Zubieta, L., & Bonert, R. (2000). Characterization of double-layer capacitors for power electronics applications. IEEE Transactions on Industry Applications, 36(1), 199–205.

    Article  Google Scholar 

  48. Rafik, F., Gualous, H., Gallay, R., Crausaz, A., & Berthon, A. (2007). Frequency, thermal and voltage supercapacitor characterization and modeling. Journal of Power Sources, 165(2), 928–934.

    Article  Google Scholar 

  49. Solano, J., Hissel, D., & Pera, M. C. (2013). Modeling and parameter identification of ultracapacitors for hybrid electrical vehicles. 2013 I.E. Vehicle Power and Propulsion Conference (VPPC) (pp. 1–4).

    Google Scholar 

  50. Piller, S., Perrin, M., & Jossen, A. (2001). Methods for state-of-charge determination and their applications. Journal of Power Sources, 96(1), 113–120.

    Article  Google Scholar 

  51. Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009). Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Applied Energy, 86(9), 1506–1511.

    Article  Google Scholar 

  52. Sivarasu, S. R., Chandira Sekaran, E., & Karthik, P. (2015). Development of renewable energy based microgrid project implementations for residential consumers in India: Scope, challenges and possibilities. Renewable and Sustainable Energy Reviews, 50, 256–269.

    Article  Google Scholar 

  53. Menezes, A. C., Cripps, A., Buswell, R. A., Wright, J., & Bouchlaghem, D. (2014). Estimating the energy consumption and power demand of small power equipment in office buildings. Energy and Buildings, 75, 199–209.

    Article  Google Scholar 

  54. Caquilpan, V., Saez, D., Hernandez, R., Llanos, J., Roje, T., & Nunez, A. (2017). Load estimation based on self-organizing maps and Bayesian networks for microgrids design in rural zones. 2017 I.E. PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America) (pp. 1–6).

    Google Scholar 

  55. Llanos, J., Saez, D., Palma-Behnke, R., Nunez, A., & Jimenez-Estevez, G. (2012). Load profile generator and load forecasting for a renewable based microgrid using Self Organizing Maps and neural networks. The 2012 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).

    Google Scholar 

  56. Verdu, S. V., Garcia, M. O., Senabre, C., Marin, A. G., & Franco, F. J. G. (2006). Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps. IEEE Transactions on Power Apparatus and Systems, 21(4), 1672–1682.

    Article  Google Scholar 

  57. Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., & Louche, A. (2007). A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy, 35(11), 5708–5718.

    Article  Google Scholar 

  58. Martinez, A., Abbes, D., & Champenois, G. (2012). Eco-design optimisation of an autonomous hybrid wind–photovoltaic system with battery storage. IET Renewable Power Generation, 6(5), 358–371.

    Article  Google Scholar 

  59. Diaf, S., Notton, G., Belhamel, M., Haddadi, M., & Louche, A. (2008). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, 85(10), 968–987.

    Article  Google Scholar 

  60. McEvoy, A., Markvart, T., & Castaner, L. (2003). Practical handbook of photovoltaics: fundamental and applications. Amsterdam: Elsevier.

    Google Scholar 

  61. Stoppato, A. (2008). Life cycle assessment of photovoltaic electricity generation. Energy, 33(2), 224–232.

    Article  Google Scholar 

  62. Sherwani, A. F., Usmani, J. A., & Varun. (2010). Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews, 14(1), 540–544.

    Article  Google Scholar 

  63. Sullivan, J. L., & Gaines, L. (2012). Status of life cycle inventories for batteries. Energy Conversion and Management, 58, 134–148.

    Article  Google Scholar 

  64. Fleck, B., & Huot, M. (2009). Comparative life-cycle assessment of a small wind turbine for residential off-grid use. Renewable Energy, 34(12), 2688–2696.

    Article  Google Scholar 

  65. Wang, L., & Singh, C. (2009). Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Transactions on Energy Conversion, 24(1), 163–172.

    Article  Google Scholar 

  66. Fadaee, M., & Radzi, M. A. M. (2012). Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews, 16(5), 3364–3369.

    Article  Google Scholar 

  67. Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., & Ríos-Moreno, G. J. (2012). Optimal sizing of renewable hybrids energy systems: A review of methodologies. Solar Energy, 86(4), 1077–1088.

    Article  Google Scholar 

  68. Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M., & Ahn, S.-H. (2015). Optimization of hybrid renewable energy power systems: A review. International Journal of Precision Engineering and Manufacturing, 2(1), 99–112.

    Article  Google Scholar 

  69. Yann, C., & Patrick, S. (2004). Multiobjective optimization: principles and case studies. Berlin: Springer.

    MATH  Google Scholar 

  70. Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (8th ed.). New York: Springer.

    MATH  Google Scholar 

  71. Pareto, V. (1896). Cours D’economie politique. Lausanne: F.Rouge.

    Google Scholar 

  72. Brownlee, J. (2011). Clever algorithms: nature-inspired programming recipes. Melbourne.

    Google Scholar 

  73. Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2), 406–419.

    Article  Google Scholar 

  74. Li, J., Wei, W., & Xiang, J. (2012). A simple sizing algorithm for stand-alone PV/Wind/Battery hybrid microgrids. Energies, 5(12), 5307–5323.

    Article  Google Scholar 

  75. Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 86(2), 163–169.

    Article  Google Scholar 

  76. Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M., & Wang, C. (2014). Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy, 113, 1656–1666.

    Article  Google Scholar 

  77. Moradi, M. H., Eskandari, M., & Mahdi Hosseinian, S. (2015). Operational strategy optimization in an optimal sized smart microgrid. IEEE Transactions on Smart Grid, 6(3), 1087–1095.

    Article  Google Scholar 

  78. Di Silvestre, M. L., Graditi, G., & Riva Sanseverino, E. (2014). A generalized framework for optimal sizing of distributed energy resources in micro-grids using an indicator-based swarm approach. IEEE Transactions on Industrial Informatics, 10(1), 152–162.

    Article  Google Scholar 

  79. Barley, C. D., Winn, C. B., Flowers, L., & Green, H. J. (1995). Optimal control of remote hybrid power systems. Part I: Simplified model. Proceedings of WindPower’95, 1995.

    Google Scholar 

  80. Narkhede, M. S., Chatterji, S., & Ghosh, S. (2012). Trends and challenges in optimization techniques for operation and control of microgrid—A review. 2012 1st International Conference on Power and Energy in NERIST (ICPEN) (pp. 1–7).

    Google Scholar 

  81. Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International Transactions in Operational Research, 22(1), 3–18.

    Article  MathSciNet  Google Scholar 

  82. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  83. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  84. Katsigiannis, Y. A., Georgilakis, P. S., & Karapidakis, E. S. (2010). Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables. IET Renewable Power Generation, 4(5), 404.

    Article  Google Scholar 

  85. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary algorithm,” 2001.

    Google Scholar 

  86. Dufo-López, R., & Bernal-Agustín, J. L. (2008). Multi-objective design of PV–wind–diesel–hydrogen–battery systems. Renewable Energy, 33(12), 2559–2572.

    Article  Google Scholar 

  87. Turcotte, D., Ross, M., & Sheriff, F. (2001). Photovoltaic hybrid system sizing and simulation tools: status and needs. PV Horizon: workshop on photovoltaic hybrid systems (pp. 1–10).

    Google Scholar 

  88. HOMER (The Hybrid Optimization Model for Electric Renewables). Retrieved from http://www.homerenergy.com/

  89. Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205.

    Article  Google Scholar 

  90. Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412–1425.

    Article  Google Scholar 

  91. HYBRID2 (Hybrid Power Systems 2). Retrieved from http://www.umass.edu/windenergy/research/topics/tools/software/hybrid2

  92. iHOGA (Improved hybrid optimization by genetic algorithm). Retrieved from http://personal.unizar.es/rdufo

  93. TRNSYS (Transient energy system simulation program). Retrieved from http://sel.me.wisc.edu/trnsys/

  94. “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.” IEEE Std. 1547-2003 (pp. 1–28), 2003.

    Google Scholar 

  95. “IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems.” IEEE Std 1547.4-2011 (pp. 1–54), 2011.

    Google Scholar 

  96. “IEEE Recommended Practice for Interconnecting Distributed Resources with Electric Power Systems Distribution Secondary Networks,” IEEE Std 1547.6-2011 (pp. 1–38), 2011.

    Google Scholar 

  97. “IEEE Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection.” IEEE Std 1547.7-2013 (pp. 1–137), 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rey, J.M., Vergara, P.P., Solano, J., Ordóñez, G. (2019). Design and Optimal Sizing of Microgrids. In: Zambroni de Souza, A., Castilla, M. (eds) Microgrids Design and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-98687-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98687-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98686-9

  • Online ISBN: 978-3-319-98687-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics