Skip to main content

Electrical Power Systems: Evolution from Traditional Configuration to Distributed Generation and Microgrids

  • Chapter
  • First Online:
Microgrids Design and Implementation

Abstract

Microgrids can be understood as a complete electrical power system in all characteristics which are inherent to them but on a tiny scale. Although small scaled, they are endowed with high operational and constitutive sophistication enabling them to operate independently, sometimes connected to the distribution system and other times, appropriately, as an isolated system. The paradigm of central control does not exist anymore in this operational philosophy. Thanks to the high quantity and quality of information received from the bulk system summed to the decentralized operation, microgrids can locally provide a higher level of reliability than that provided by the whole system. This chapter gives an overview of electrical power systems evolution stating its current situation with regard to its own function, economic aspects, and environment relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoft, S. (2002). Power systems economics: Designing markets for electricity. New York: IEEE Press.

    Book  Google Scholar 

  2. Joskow, P. L. (1989). Regulatory failure, regulatory reform and structural change in the electric power industry. Brookings Papers on Economic Activity: Microeconomics (pp. 125–199).

    Google Scholar 

  3. Kidokoro, K. (1996). Price-based and cost-based regulations for a monopoly with quality choice. Discussion Paper, CSIS – University of Tokyo. [Online]. http://www.csis.u-tokyo.ac.jp/dp/14.pdf

  4. Damsgaard, N. (2003). Deregulation and regulation of electricity markets. PhD Dissertation, The Economic Research Institute, Stockholm School of Economics, EFI.

    Google Scholar 

  5. Abhyankar, A. R., & Khaparde, S. A. (2002). Introduction to deregulation in power industry, report by Indian Institute of Technology, Mumbai.

    Google Scholar 

  6. Shahidehpour, M., Yamin, H., & Li, Z. (2002). Market operations in electric power systems. New York: John Wiley & Sons.

    Book  Google Scholar 

  7. Hirsh, R., & Sovacool, B. (2006). Technological systems and momentum change: american electric utilities, restructuring, and distributed generation technologies. Spring: Journal of Technology Studies.

    Google Scholar 

  8. Machowski, J., Bialek, J. W., & Bumby, J. R. (1997). Power system dynamics and stability. New York: John Wiley & Sons.

    Google Scholar 

  9. Hingorani, N. G., & Gyugyi, L. (2000). Understanding FACTS – concepts and technology of flexible AC transmission systems. New York: John Wiley & Sons.

    Google Scholar 

  10. Asare, P., Diez, T., Galli, A., O’Neill-Carillo E., Robertson, J., & Zhao, R. (1994). An overview of flexible AC transmission systems. ECE technical reports, Purdue University.

    Google Scholar 

  11. de Andrade, L., & de Leão, T. P. (2012). A brief history of direct current in electrical power systems. IEEE HINSTELCON – History of Electro-Technology Conference (pp. 1–6).

    Google Scholar 

  12. Kim, C. K., Sood, V. K., Jang, S. J. L., & Lee, S. J. (2009). HVDC transmission: Power conversion applications in power systems. New York: John Wiley & Sons.

    Book  Google Scholar 

  13. Bahrman, M. P. (2006). Overview of HVDC transmission. IEEE Power Systems Conference and Exposition (pp. 18–23).

    Google Scholar 

  14. Siemens. (2014). High voltage direct current transmission – proven technology for power exchange. Siemens AG Power Transmission and Distribution High Voltage Division [Online]. http://www.ewh.ieee.org/r6/san_francisco/pes/pes_pdf/HVDC_Technology.pdf

  15. Hau, E., & von Renoward, H. (2013). Wind turbines: Fundamentals, technologies, applications, economics. Berlin: Springer Vieweg.

    Book  Google Scholar 

  16. Fortmann, J. (2015). Modeling of wind turbines with doubly fed generator system. Dordrecht: Springer Vieweg.

    Book  Google Scholar 

  17. GWEC. (2014). Global Wind Energy Outlook – 2014. Global Wind Energy Council. [Online]. http://www.gwec.net/wp-content/uploads/2014/10/GWEO2014_WEB.pdf

  18. Masson, G., Orlandi, S., & Rekinger, M. (2004). Global market outlook for photovoltaics 2014–2018. EPIA.

    Google Scholar 

  19. Basulado, M., Feroldi, D., & Outbib, R. (2012). PEM fuel cells with bio-ethanol processor systems. London: Springer.

    Book  Google Scholar 

  20. Zhang, J. (2008). PEM fuel cell electrocatalysts and catalyst layers: Fundamentals and applications. London: Springer.

    Book  Google Scholar 

  21. Sammes, W. (2006). Fuel cell technology: Reaching towards commercialization. London: Springer.

    Book  Google Scholar 

  22. E4tech – Strategic Thinking in Sustainable Energy. (2014). The fuel cell industry review – 2014. E4tech [Online]. http://www.fuelcells.org/pdfs/TheFuelCellIndustryReview2014.pdf

  23. Yeleti, S., & Fu, Y. (2010). Impacts of energy storage on future power systems. IEEE North American Power Symposium (pp. 1–7).

    Google Scholar 

  24. Dobakashari, A. S., Azizi, S., & Ranjbar, A. M. (2011). Control of micro grids: Aspects and prospects. IEEE International Conference on Networking, Sensing and Control (pp. 38–43).

    Google Scholar 

  25. Mariam, L., Basu, M., & Colon, M. F. (2012). A review of existing microgrids architectures. IEEE Power and Energy Society General Meeting (pp. 1–7).

    Google Scholar 

  26. Ustun, T. S., Kahn, R. H., Hadbah, A., & Kalam, A. (2013). An adaptative microgrid protection scheme based on a wide area smartgrid communication network. IEEE Latin America Conference on Communications (pp. 1–5).

    Google Scholar 

  27. Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks (vol. 6). IET Renewable Energy Series. Institution of Engineering and Technology.

    Google Scholar 

  28. Falcão, D. M. (2009). Smart grids and microgrids: The future is already present. VIII Simpase Conference Proceedings (in Portuguese).

    Google Scholar 

  29. Lasseter, R. (2002). Microgrids. IEEE Power Engineering Society Winter Meeting Conference Proceedings (pp. 305–308).

    Google Scholar 

  30. Guerrero, J. M., Vasquez, J. C., Matas, J., Castilla, M., & de Vicuna, L. G. (2009). Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Transactions on Industrial Electronics, 56(3), 726–736.

    Article  Google Scholar 

  31. Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jimenez-Estevez, G. A., & Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905–1919.

    Article  Google Scholar 

  32. Lopes, J. A. P., Moreira, C. L., & Madureira, A. G. (2006). Defining control strategies for microgrids islanded operation. IEEE Transactions on Power Systems, 21(2), 916–924.

    Article  Google Scholar 

  33. Hatziargyriou, N. (2014). Microgrids architectures and control. New York: John Wiley & Sons.

    Google Scholar 

  34. Justo, J. J., Mwasilu, F., Lee, J., & Jung, J. W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24, 387–405.

    Article  Google Scholar 

  35. Shah, K., Chen, P., Schwab, A., Shenai, K., Gouin-Davis, S., & Downey, L. (2012). Smart efficient solar DC micro-grid. IEEE Energytech Conference Proceedings.

    Google Scholar 

  36. Liu, X., Wang, P., & Loh, P. C. (2010). A hybrid AC/DC micro-grid. IPEC Conference Proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delboni, L.F.N., Marujo, D., Balestrassi, P.P., Oliveira, D.Q. (2019). Electrical Power Systems: Evolution from Traditional Configuration to Distributed Generation and Microgrids. In: Zambroni de Souza, A., Castilla, M. (eds) Microgrids Design and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-98687-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98687-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98686-9

  • Online ISBN: 978-3-319-98687-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics